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Abstract. Amongst provably secure signature schemes, two distinct
classes are of particular interest: the ones with tight reduction (e.g.,
RSA-PSS), and those which support the use of coupons (e.g., Schnorr
signature).
This paper introduces a new generic signature scheme based on any
zero-knowledge identification protocol Z and signature scheme S veri-
fying basic security properties. The so-obtained signature scheme fea-
tures provable security with tight reduction under the same complexity
assumptions as the ones under which the basic zero-knowledge identi-
fication protocol and signature scheme are secure. In addition to that,
interestingly, the combined scheme supports coupons.
We propose an application of our generic conversion scheme based on
RSA. We note however that any computational problem P could be
turned into such a tight signature scheme supporting coupons for any
zero-knowledge identification protocol and signature scheme based on P.
Interestingly, our design technique provides an alternative to the RSA-
PSS signature standard, as it enjoys an equivalently tight security while
enabling the use of coupons for increased performances.

1 Introduction

Signatures are certainly the most extensively used functionality in public key
cryptography. Most popular signature schemes include RSA [25] or Schnorr [26]
but a lot of other signature schemes have been proposed through the years.
However, one had to wait until 1995 to find adequate security analysis of these
thanks to Bellare and Rogaway’s random oracle model which provided the source
of the first security proofs for practical signature schemes [1, 2]. The use of this
model typically allows to give the attacker access to oracles simulating hash
functions and signatures, resulting in the computational transformation of a
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forged signature into the solution of a problem taken as a reference and assumed
to be hard to solve (e.g., integer factorization, e-th root or discrete logarithm
extraction).

Even though a few signature schemes exist that are proven secure in the
standard model [9, 5], proofs in the random oracle model are still widely used
today as they lead to better reductions than any other proof technique.

Up to now, one of the most powerful reduction technique in the random
oracle model is the Forking Lemma introduced by Pointcheval and Stern [20].
This technique is extremely general, and roughly consists in running the attacker
repeatedly with different random oracles to get two distinct but related forged
signatures. Most zero-knowledge signature schemes are such that, once applied,
this technique allows one to recover the secret key.

The Forking Lemma is a powerful proof concept due to its generality: one
only assumes the use of random oracles. Its major drawback, however, is that
a loose reduction is obtained, i.e., an attacker against the signature scheme can
be used to break a supposedly intractable problem, but with a probability much
smaller than the probability of a forgery. A consequence of that fact is that using
a scheme proven secure with the Forking Lemma requires larger keys, resulting
in a loss of efficiency. This constitutes a significant disadvantage in comparison
with schemes such as RSA-PSS [2] for which there exists a proof turning a forger
into a tight e-th root extractor [2, 4].

On the other hand, the Forking Lemma sometimes appears as the only way
to come up with a proof that a given signature scheme is secure, particulary
for those derived from zero-knowledge protocols via the Fiat-Shamir heuristic
[8]. These last signature schemes have the appealing additional property that
the signer can precompute a quantity of the signature independently from the
message called a coupon, and use this precomputation later to generate the
complete signature in a very fast way [8].

In [6], Goldreich and Micali proposed a method to convert signature schemes
into schemes with coupons, with the restriction of using a one-time signature
scheme. Later in [27], Shamir and Tauman proposed a different solution to
achieve this goal relying on chameleon hash functions [15].

In this paper, we introduce a new technique to achieve the same goal, that
combines a signature scheme with a zero knowledge identification protocol veri-
fying properties discussed later in the paper. The obtained scheme can be simu-
lated in the random oracle model in a very tight way; we show that the scheme
is approximately as secure as the weakest of its constituents.

An attractive property of our scheme is that it is as fast as the third pass
of the underlying zero knowledge identification protocol, as soon as the signer
uses coupons while signing. We note that this is not possible with cryptosystems
like RSA-PSS or RSA-FDH. Combining the properties of high computational
performance and tight security reduction is especially desirable in constrained
environments such as smart cards and shows the interest of our results for prac-
titioners.
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Our paper is divided into four parts. In the next section, we introduce zero-
knowledge identification protocols, Σ-protocols and signature schemes. Section 3
describes our generic conversion and assesses its security in the random oracle
model. We also compare our results with prior works [6, 27]. Finally, Section 4
provides a particularly interesting instantiation of our scheme based on the RSA
problem.

2 Definitions and Related Work

2.1 Zero-Knowledge Identification Protocols

Zero-knowledge identification protocols were invented by Fiat and Shamir in [8]
as an identification paradigm. They are often seen as a (usually three or four-
pass) series of exchanges between a prover and a verifier. Zero-knowledge iden-
tification protocols are a way for the prover to convince that he knows a secret
(thereby proving his identity) without revealing to the verifier any other in-
formation whatsoever about the secret itself. More precisely, a zero-knowledge
identification protocol is referred to as a proof of knowledge that has in addition
the zero-knowledge property captured by the notion of indistinguishable simu-
latability. We refer the reader to [17] for more about zero-knowledge protocols.

We consider in what follows a three-pass zero-knowledge identification pro-
tocol Z containing a key generator GenZ which generates public parameters
α ∈ Λ and private parameters s ∈ S. The protocol is also defined by some public
functions U : R 7→ X, V : S × R ×G 7→ Y and W : Λ ×G × Y 7→ X, and runs
as shown on the following picture:

– The prover picks a random r ∈ R, computes x = U(r) and sends
x to the verifier.

– The verifier verifies that x ∈ X and sends a random challenge
g ∈ G to the prover.

– The prover replies with y = V(s, r, g) and the verifier checks that
x = W(α, g, y) and y ∈ Y .

Fig. 1. A three-pass zero-knowledge identification protocol Z.

2.2 Signature Schemes and Coupons

A signature scheme S is defined as a collection of probabilistic algorithms (GenS ,
Sig, Ver) used in the following way. During set up, a key pair is generated by
running algorithm GenS , and the private key d is kept secret by the legitime
user while the public key β is published. Given a message m ∈ M , the signer
computes a signature σ = Sig(d, m). A verifier can ascertain that a signature is
valid by checking that Ver(β, σ,m) = True.
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The well-known Fiat-Shamir heuristic allows to turn a zero-knowledge iden-
tification protocol into a signature scheme. Briefly, the Fiat-Shamir transform
makes the protocol non interactive by replacing the verifier’s challenge g by the
result of hashing x and m with a secure hash function.

Signature schemes derived from identification protocols via the Fiat-Shamir
transform are of particular interest as they allow the use of coupons: typically, the
first step consisting in computing x = U(r) can be performed before receiving the
message m. Later, the signature generation is completed with the computation
of g = G(m,x) and y = V(s, r, g). This second, message-dependent computation
stage happens to be much faster than the first step in most zero-knowledge
identification protocols Z.

2.3 Σ-protocols and Forking Lemma

Σ-protocols are zero-knowledge protocols featuring an additional property: given
any couple of correct transcriptions (x, g1, y1) and (x, g2, y1) with g1 6= g2, it
is computationally easy to recover the prover’s secret key s and consequently
solve the computational problem PZ underlying the identification protocol. This
directly implies that a coupon must be used only once.

This property is fulfilled by many protocols and is in fact the cornerstone of
the Forking Lemma introduced by Pointcheval and Stern in [20] to prove security
in the random oracle model. The intuition is that an attacker capable of forging
a signature with some probability ε can be transformed, in the random oracle
model, into an algorithm that finds two valid signatures (x, g1, y1) and (x, g2, y1)
with g1 6= g2 under probability O (

ε2
)
.

Briefly, the reduction technique runs the attacker over random definitions of
the oracle G until a forgery (x, g1, y1) is output by the attacker. Then, in the
replay phase, the attacker is rerun over partially modified oracle definitions with
the hope to get a second forgery (x, g2, y2). In this second forgery, the answer g2

is different from g1 with overwhelming probability.
The Forking Lemma, however, provides loose security reductions as an at-

tacker breaking the security of a Σ-protocol with probability ε is turned into an
algorithm solving PZ with a significantly smaller probability.

Contrarily to loose security, there exist signature schemes admitting tight
security reductions, meaning that an attacker breaking S with a certain proba-
bility can be used to solve the underlying computational problem with similar
probability.

2.4 A Generic Construction for Tight Security with Coupons

Very few signature schemes feature both a tight security and coupons. There
exists however a construction by Shamir and Tauman that achieves this twofold
goal using chameleon hash functions [15]. The basic idea is to use a chameleon
hash function H to compute σ = Sig(d,H(m′, r′)) for randomly chosen m′ ∈M
and r′ ∈ R. Given the message m, the signer simply has to compute r so that
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H(m, r) = H(m′, r′). The signature of m ∈M is then (σ, r) and is easily verified
by checking whether Ver(β, σ,H(m, r)) = True.

The construction described in this paper is different, and we compare it to
Shamir and Tauman’s approach later in the paper.

2.5 Known-Message and Chosen-Message Attacks

Several security notions have been defined for signature schemes and properly
formalized in the seminal work of Goldwasser, Micali and Rivest [12, 13]. To
quantify the security of a signature scheme, one has to define the adversary’s
goal and ressources.

A typical goal resides in existential forgery : the adversary tries to create
a valid message-signature pair for a freely chosen message. The corresponding
security property that a signature scheme fulfills to resist such an attack is called
existential unforgeability (EUF).

Beyond the verification key which is public and hence known to the adversary,
more information about the secret key may also be available. The strongest
access to side information is captured by the scenario of adaptive chosen-message
attacks (CMA), where the attacker may request the signer to sign any message of
its choice in an adaptive way. In this paper, we also need a weaker type of attack
called known-message attacks (KMA), where the attacker receives a number qs

of message-signature pairs (mi, σi) she has no control on.
We say that a signature scheme is secure against adaptive chosen-message

attacks if it resists existential forgeries under adaptive chosen-message attacks
(EUF-CMA). A signature scheme is said to be secure against known-message
attacks if no existential forgery is computationally feasible under any known-
message attack (EUF-KMA).

Obviously, signature schemes that are EUF-CMA secure also are EUF-KMA
secure. It is also known that there exist signatures that are EUF-KMA secure
without being EUF-CMA secure, thereby showing that these two notions are
distinct.

3 The Proposed Scheme

In this section, we introduce a novel conversion scheme which provides a way to
build new signature schemes and discuss its features and security properties.

3.1 Our Construction

The first ingredient of our construction is a Σ-protocol Z which security relies
on a problem PZ , defined as above by a key generator GenZ generating public
and private parameters α ∈ Λ and s ∈ S, and by some public functions U :
R 7→ X, V : S × R × G 7→ Y and W : Λ × G × Y 7→ X. This is as described
on Fig. 1. Examples of such Σ-protocols are numerous, including Feige-Fiat-
Shamir [7], Guillou-Quisquater [14], Schnorr [26], Poupard-Stern [22], Girault-
Poupard-Stern [10, 21].
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Our scheme also uses a EUF-KMA-secure signature scheme S : H 7→ X
based on a problem PS , defined as a triple (GenS ,Sig, Ver). All known signa-
ture schemes that are EUF-KMA-secure in the random oracle model are such
that there exists a probabilistic simulator Sim which outputs on demand the
signature of qs random messages in polynomial time T0 = poly(qs). We will
make use of this simulator in our security proof. An example of such a simulator
can be found in every known proof that FDH-RSA is EUF-KMA-secure. Finally,
our scheme uses a collision-intractable hash function G : M× X 7→ G and a
full-domain-hash function H : X 7→ H.

Our signature scheme is as follows.

Key generation: A key is generated by running GenZ and GenS . The
private key of the scheme is (d, s) while the public key is (α, β).

Signature: To sign a message m ∈ M, one randomly chooses r ∈ R
and computes u = U(r), h = H(u) and x = Sig(d, h). Upon receiv-
ing the message m, one computes g = G(m,x) and y = V(s, r, g).
The signature on m is σ = (x, y).

Verification: To verify a signature σ = (x, y) ∈ X × Y , one com-
putes g′ = G(m,x), u′ = W(α, g′, y) and h′ = H(u′). Finally, the
signature σ is accepted iff Ver(β, x, h′) = True.

To simplify the description of the verification, we have supposed that G and
W are only defined on their respective input sets, checking implicitly the fact
that x and y are in the correct sets X and Y . When implementing these functions
over larger sets, it is critical that these tests are added before computing G(m,x)
and W(α, g′, y).

Note 1. Our scheme has basically three steps: computing a coupon of a zero-
knowledge scheme, signing it with a signature scheme and, at the reception of
the message, giving the response of the zero-knowledge scheme, corresponding
to the hash of the message and the signature.

Signature size. The size of the signature is |X|+ |Y |. This differs slightly from
the size of the original signature scheme derived from Z via Fiat-Shamir, as in
this scheme, a technique due to Schnorr reduces the signature size to |G|+ |Y |.
Size of public and private parameters. As a combination of two schemes
Z and S, our general scheme has a lot of parameters, public or private. But for
particular scheme instantiations, some parameters could be shared between the
signature scheme and the zero-knowledge identification protocol, thus reducing
the number or size of the parameters. A concrete example is given in Section 4,
with an instantiation of our scheme based on RSA.

Performances of signature generation. Used in a classical way, the ex-
ecution time of our proposed signature is roughly the addition of the execution
times of Sig, U , H, G and V. Using coupons, however, the off-line part (i.e., pre-
computing (x, r)) is carried out before the on-line part of the signature takes
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place. The on-line computation then requires computing a hash value and run-
ning V once. This, in most identification protocols, remains very fast. This is
notably the case within Schnorr, Poupard-Stern and Girault-Poupard-Stern.

Ease of implementation. Our scheme relies on a few hash functions, an arbi-
trary EUF-KMA signature and a Σ-protocol that can be chosen among popular
examples. Hence, the software development of new algorithms is unnecessary in
order to implement our scheme, already existing software routines may be simply
linked together as proposed. This is of particular interest for constrained devices
such as smart cards, where the size of code memory is limited, and for which
developments may take a long time. In this respect, clearly, the fact that our
scheme reuses implemented and tested routines with e.g., protections against
side-channel and fault attacks is a strong advantage.

Furthermore, the management of the public key can be done within existing
public key infrastructures (PKI) as soon as systems S and Z preexisted by
themselves in the PKI.

Comparison with [6] and [27]. The approach of [6] remains faster than the
present work, but it suffers from imposing too large signatures. In this respect,
the construction given in [27] is actually closer to our work, even if based on a
totally different design. The same security level is achieved: [27] is tightly based
on the problem of finding collisions in the chameleon hash function and of forging
a signature with the EUF-CMA-secure signature scheme, while, as shown in the
sequel, our construction is tightly related to the problem of recovering the secret
key of the zero-knowledge scheme Z and of forging a signature of the EUF-KMA
secure signature scheme S.

Security. Most interestingly, even against an EUF-CMA attacker, our scheme
remains as secure as the weakest problem among PS and PZ . This reduction is
again tight, as shown in the next subsection. A natural construction is then to
use a signature scheme S and a zero knowledge identification protocol Z that
are based on the same problem, as proposed in Section 4.

3.2 Security of the scheme

We will prove that our scheme is secure in the random oracle model even when
the attacker is given access to the signature of qs messages of her choice. The
adversary may also invoke random oracles returning the hash value of qh inputs
(more precisely qH and qG queries to H and G, respectively). We prove that an
attacker against our signature scheme can be used to solve either PS or PZ with
a probability approximately equal to the attacker’s success probability. More
formally, we state the following theorem:
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Theorem 1. Let A be an adversary producing with success probability ε
and within time bound τ an existential forgery of the proposed scheme
(Z,S) under a chosen-message attack. Then, there is an algorithm that
solves either PZ or PS with probability ε′ in time τ ′ where

ε′ ≥ ε− (qH + qs)2

|H| − (qG + qs)2

|G| − (qG + qs) · qs

|X|
and

τ ′ ≤ τ + qsTW + T0,

after qH queries to H, qG queries to G and qs queries to the signing oracle
respectively, noting TW the time of evaluating W and T0 the time needed
by the S oracle to compute and send qs random message-signature pairs.

Classically, we use the formalism of incremental games, starting with the real
game G0 and ending up with G6. We are given a EUF-KMA-secure signature
scheme S and a Σ-protocol Z. The goal of our proof is to use an attacker against
our scheme to solve one of the two problems PZ or PS .

Game G0: This is the real attack game, in the random oracle model, which
includes the verification step. This means that the attack game consists in giving
the public key to the adversary, as well as a full access to the signing oracle. If a
forgery is output, it is checked for validity. Note that the adversary is authorized
to ask qs queries to the signing oracle, qH queries to the hash oracle H and qG
queries to the hash oracle G. We are interested in the event S0 which occurs
if the verification step succeeds (and the signature was never returned by the
signing oracle).

Succeuf−cma
(Z,S) (A) = Pr[S0]. (1)

Game G1: In this game, we simulate the hash oracle and the signing oracle,
as well as the last verification step, as shown on Figure 2. From this simulation,
we easily see that the game is perfectly indistinguishable from the real attack.

Pr[S1] = Pr[S0]. (2)

Game G2:
In the next game, we use the S simulatability property. From the simulator

Sim, we receive qs pairs (ri, σi) where the σi are valid signatures of ri. This
makes the game perfectly indistinguishable.

Pr[S2] = Pr[S1]. (3)

Game G3:
In this new game, we perform the following step before running the attacker,

and consequently before receiving any query from it. We generate qs random
pairs (yi, gi) ∈ Y × G. Then, for each of them, we compute and store ui =
W(α, gi, yi).
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H
o
ra

cl
e For a hash-query H(q) such that ∃h, (q, h) ∈ H-List, output h. Otherwise

the output h is defined according to the following rule:

IRule H(1)

Choose a random element h ∈ H. The record (q, h)
is appended to H-List.

G
o
ra

cl
e For a hash-query G(q), such that ∃g, (q, g) ∈ G-List, output g. Otherwise

the output g is defined according to the following rule:

IRule G(1)

Choose a random element g ∈ G. The record (q, g) is
appended to G-List.

S
ig

n
o
ra

cl
e For a sign-query Sign(m), we use the following rule:

IRule Sign(1)

One first generates a random r ∈ R, computes u =
U(r) and h = H(u), and then computes x = Sig(d, h).
A query to the simulation of the G oracle follows
to obtain g = G(m, x). Finally one computes y =
V(s, r, g). The output signature is then (x, y).

V
e
ri

fy
o
ra

cl
e The game ends with the verification of the output (x, y) of the adversary.

One first asks to the oracle g′ = G(m, x), then computes u′ = W(α, g′, y)

and h′ = H(u′). One then checks whether Ver(β, x, h′)
?
= True, in which

case the signature is a valid signature of m. Once again, it is supposed that
G and W are only defined on their respective set, verifying implicitly the
fact that x ∈ X and y ∈ Y . Otherwise this test is added in the verification
step.

Fig. 2. Simulation of the Attack Game

Obviously, this maintains the game perfectly indistinguishable from the pre-
vious one:

Pr[S3] = Pr[S2]. (4)

Game G4: In this game, we change the way we simulate the H oracle.

IRule H(4)

– if the query q is equal to one of the ui, we set h = ri

– otherwise we choose a random element h ∈ H\{ri}
with some probability χ and h ∈ {ri} with probability
(1− χ).

The record (q, h) is appended to H-List.
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Parameter χ is chosen so that each element of H has an equal probability
to be output. The evaluation of χ is not done here but trivially follows from
simple considerations. As ri are unknown to the attacker, this game is perfectly
indistinguishable from the previous one.

Pr[S4] = Pr[S3]. (5)

Game G5:
In this game, we number the queries to the signature oracle with some index

i. From now, we are able to sign any message, as follows:

IRule Sign(5)

For the i-th query, if G(m,σi) is already defined, the game
stops. Otherwise, ((m, σi), gi) is appended to G-List.
Then the returned signature for message m is (σi, yi).

As one may observe, the signature is valid: by definition, G(m,σi) = gi,
ui = W(α, gi, yi), H(ui) = ri and σi is a valid signature of ri.

This game is indistinguishable from the previous one, except that bad events
may happen. More precisely, because σi can not be guessed by the attacker
better than randomly (because it is the signature of a random element), the fact
that G(m,σi) must not be defined introduces a factor (1− (qG + qs)/|X|)qs .

Hence, this game is such that:

Pr[S5] ≥ Pr[S4] ·
(

1− (qG + qs)
|X|

)qs

. (6)

Game G6: This game is the final one, in which we use a forge output by
the attacker. By definition, after qh hash queries and qs signature queries, the
attackerA is able to output a signature (x̂, ŷ) of some message m̂ with probability
ε and within time τ . If the attacker succeeds, we show how to use the forge to
break one of the two computational problems. If no forge is output, the game is
aborted.

First of all, we compute ĝ = G(m̂, x̂) and û = W(α, ĝ, ŷ). If one among these
hash values was never queried by the attacker, the adequate oracles are solicited
to recover its output. Using the same technique, we set ĥ = H(û). Then, we have
three cases, as explained on Fig. 3.

Finally, in the three cases, this game can be used to solve one of the two
supposedly intractable problems with probability

Pr[S6] ≥ Pr[S5] ·
(

1− (qH + qs)
|H|

)qH+qs

·
(

1− qG + qs

|G|
)qG+qs

. (7)

Combining previous equations, one can see that

ε′ ≥ ε ·
(

1− (qH + qs)2

|H| − (qG + qs)2

|G| − (qG + qs) · qs

|X|
)

.

ut
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Case One: In the first case, ĥ is not an ri. Then, (ĥ, x̂) is a valid
forgery against the signature scheme S.

Case Two: In the second case, ĥ = ri and x̂ 6= σi for some i. Then
(ĥ, x̂) is a valid forgery against the signature. Remark that this case
can happen only if the signature is a probabilistic signature.

Case Three: In the last case, ĥ = ri and x̂ = σi for some i. Then
with overwhelming probability we have û = ui, otherwise a collision
on H has been found. Hence, û = ui with probability greater than
(1− qH/|H|)qH .
By definition, we then have:

û = ui = W(α, gi, yi) = W(α, ĝ, ŷ) .

As one can see, we are now in the hypothesis of the Forking Lemma,
but without having to restart the attacker in any sense, contrarily to
what is usually done when using the Forking Lemma. Consequently,
as Z is a Σ-protocol, we are able from this equality to recover the
secret, as soon as (gi, yi) 6= (ĝ, ŷ).
As the forged signature is a new signature, we must have (σi, mi, yi) 6=
(x̂, m̂, ŷ), which in this case means that (mi, yi) 6= (m̂, ŷ).

– If mi = m̂, we immediately have (gi, yi) 6= (ĝ, ŷ).
– Otherwise, if mi 6= m̂, as gi = G(mi, xi) and ĝ = G(m̂, x̂), we

have either gi 6= ĝ or a collision on G has been found by the
attacker. This can not happen with a factor greater than (1 −
(qG + qs)/|G|)qG+qs .

Hence with probability (1 − (qH + qs)/|H|)qH+qs · (1 − (qG +
qs)/|G|)qG+qs , the second case of this final game allows to recover
the secret s.

Fig. 3. Breaking problems PZ or PS .



12 Benôıt Chevallier-Mames

4 An Instantiation of the Proposed Scheme

In this section, we give a typical example of a scheme based on our generic
construction. This example relies on the RSA problem, and uses FDH-RSA as the
signature S and Poupard-Stern as the zero-knowledge identification protocol Z.

4.1 Poupard-Stern: a Σ-protocol Equivalent to Factoring

Poupard-Stern is a zero-knowledge identification protocol described in [22]. Its
security relies on integer factorization. The scheme is described on Fig. 4.

Poupard-Stern uses as public key an RSA modulus n and a base a of maximal
order modulo n, and the private key is s = n− ϕ(n) of bitlength ‖s‖ = ‖n‖/2.

– Prover P picks a random r ∈ {0, 2Γ − 1} and computes x =
ar mod n, which is sent to the verifier.

– The verifier verifies that x ∈ Zn and sends a random g ∈ {0, 2‖g‖−
1} to the prover.

– The prover replies with y = r + sg, and the verifier verifies that
x = ay−ng mod n and 0 ≤ y < 2Ω .

Fig. 4. The Poupard-Stern Zero-Knowledge Identification Protocol.

The set Y is a critical part for the security of the scheme. Indeed, an attacker
could try to use ŷ = r + ng instead of the legitimate y that she can not forge.
Because s ¿ n, it is possible to thwart such a forge by maximizing the authorized
y. Furthermore, an attacker should not use a y (or even a collection of y that
could have been logged) to recover a part of the secret s. Hence, r must be large
enough to ensure that s is totally hidden within y, with respect to a security
parameter3 κ = 80.

All of this can be done by using Y as the set of positive integers smaller than
2Ω , and R as the sets of positive integers smaller than 2Γ with Γ = ‖g‖+ ‖n‖

2 +κ
and Ω = Γ + 1. We refer the reader to [22] for a more accurate analysis of the
Poupard-Stern protocol.

Security. Poupard-Stern is a Σ-protocol: being given (g1, y1) 6= (g2, y2) so that
ay1−ng1 = ay2−ng2 , one can deduce the factorization of n and thus s. Indeed,
y1 − ng1 = y2 − ng2 mod λ(n), and consequently (y1 − y2) − n(g1 − g2) is a
multiple of λ(n). As y1 ¿ n and y2 ¿ n, it is a non-zero multiple of λ(n). Then,
using Miller’s algorithm [16], one can recover the factors of n in polynomial time.

3 i.e., the legitimate y is statistically indistinguishable from a random of the same
size, where the statistical distance is controlled by the security parameter κ.
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4.2 A Signature Scheme with Coupons and Tight Reduction to
RSA

As explained earlier, coupons are not supported when using RSA and its numer-
ous variants, including in this respect Guillou-Quisquater [14]. The scheme we
now propose uses RSA and Poupard-Stern as instances of systems S and Z and
fully supports coupons.

Our scheme makes use of an RSA modulus n of secret factorization which
is common to the zero-knowledge scheme and the signature scheme. Like with
RSA, the key pair contains a public and a private exponent e and d such that
ed = 1 mod λ(n). The integer s = n− ϕ(n) is kept secret as in Poupard-Stern.

This scheme is described as follows.

Key: The public key is (e, n, a) while the private key is (s, d).
Signature: To sign a message m ∈ M, one randomly chooses r ∈

{0, 2Γ−1} and computes u = ar mod n, h = H(u) and x = hd mod
n. Upon receiving the message m, one computes g = G(m,x) and
y = r + sg.
The signature on m is σ = (x, y).

Verification: To verify a signature σ = (x, y), one computes g′ =
G(m, x), u′ = ay−ng′ mod n and h′ = H(u′). Finally, the signature
σ is accepted iff h′ ?= xe mod n and 0 ≤ y < 2Ω and 0 ≤ x < n.

As one can notice, we can not use directly the theorem of the previous section,
as the H function of the general scheme and the full-domain hash function of
the FDH-RSA signature have been combined. The complete proof of such a
particular but interesting case is given in appendix. The theorem stated there
proves that in case of self-reducibility over the signature domain (as it is the case
with FDH-RSA), one can combine the H function of the general scheme and the
full-domain hash function of the FDH signature while keeping the security tightly
equivalent to problems PS and PZ .

In our case, PS is the RSA (i.e., e-th root extraction) problem, while PZ
is the factoring problem. As the RSA problem is easier than factoring, one can
deduce that our proposed scheme is tightly equivalent to the RSA problem.

Hence, our scheme is as secure as RSA-PSS but also presents the practical
advantage of allowing coupons. Using these, generating a complete signature is
as fast as Poupard-Stern’s second step: namely, we require to perform a multi-
plication, an addition and a hash computation, consequently resulting in a much
faster procedure than carrying out a modular exponentiation with RSA-PSS.
Again, this speed-up is not at the cost of a loose reduction, as it is the case with
the non-interactive version of the original Poupard-Stern, which proof makes use
of the Forking Lemma in a classical way.

A thorough comparison between RSA-PSS and our proposed scheme is pro-
vided in the following subsection.
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4.3 Comparison of Our Scheme with RSA-PSS

RSA-PSS is described as a signature standard [19] and is extensively used world-
wide, although not as fast as signature schemes with coupons. We compare our
RSA-based scheme with RSA-PSS using a modulus of ‖n‖ ≥ 1024 bits.
Size of hashes. Because of Th. 1, one can see that a hash function G with an
output size of ‖G‖ = 160 bits is sufficient to resist an attacker allowed to make
279 queries to the G oracle. Indeed, as H is by definition a full-domain hash, we
have that ‖H‖ = ‖n‖ and by construction, ‖X‖ = ‖n‖.
Size of parameters. In RSA-PSS, the public parameters are n and e (e is
usually short), and the private key is d. In our proposed scheme, the public key
is formed by a, e and n, while in the basic presentation of the scheme, the private
key is d and s. However, one can see that we can take a small value for a (the
only property we require is that a is of maximal order). Furthermore, d and s are
redundant secrets, and one can easily compress them, if the size of the private
key elements is more important than the execution time of the signature. Using
d and kd = ed−1

ϕ(n) of bitsize ‖e‖, one can recover s = n− ed−1
kd

and then use it to
sign.

Overall, the public keys have roughly the same size in RSA-PSS and in our
scheme. The private key in our scheme is 50% longer than the private key in
RSA-PSS, but one can compress this private key at the cost of an additional
division by a small number during the generation of a coupon. In this last case,
the size of both private keys are almost equivalent.
Signature size. An RSA-PSS signature has ‖n‖ bits while the size of our
signature is ‖x‖+ ‖y‖ = ‖n‖+ ‖g‖+ ‖n‖

2 + κ = 3‖n‖
2 + 240. Hence, there is an

advantage for RSA-PSS on this point, even if the proposed signature is in fact
not quite twice as long as a RSA-PSS signature.
Performances of signature generation. Our scheme, very much like
RSA-PSS, supports the Chinese Reminder Theorem [23] thereby allowing im-
plementations with improved efficiency.

As mentioned earlier, our scheme is useful essentially if used with coupons.
When this is the case, the comparison of execution times makes our scheme very
appealing. RSA-PSS requires hash computations and a modular exponentiation
of ‖n‖ bits: using a modular exponentiation of complexity 2 ≥ c ≥ 1, this requires
c‖n‖ modular multiplications of ‖n‖ bits if hash computations are neglected. On
the other hand, our scheme with coupons is as fast as the last step in Poupard-
Stern, i.e., one hash computation and one integer multiplication of ‖n‖ bits times
160 bits. Clearly, our scheme (i.e., the online part of our signature) is more than
‖n‖ times faster than RSA-PSS.
Ease of implementation. Most importantly, our scheme and RSA-PSS are
similarly simple to implement, as they both make use of the same routines (mod-
ular exponentiation, hash functions). There is just an extra addition and integer
multiplication in our scheme, and coding this remains a very simple operation.
Security. On this point, both schemes are equivalent since equally tightly
related to the RSA problem.
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Conclusion. Hence, as far as the signature size is not a bottleneck, our scheme
could be preferred over RSA-PSS as it allows a dramatic improvement in terms
of performance for an equivalent security.

4.4 Other Signatures Based on Other Problems

As shown in the Section 3, our scheme is generic and the same technique can be
applied to a large variety of signatures schemes and zero-knowledge identification
protocols. The most interesting combinations seem however to be the ones where
the underlying problems are the same in the two components, as in the example
we proposed above where unforgeability is entirely based on the RSA problem.

There exist however other combinations that we do not explicit here, such
as combining a signature scheme due to Goh and Jarecki [11], which is tightly
equivalent to the Diffie-Hellman problem, with Schnorr’s zero-knowledge proto-
col, which is a Σ-protocol proven secure under the discrete logarithm assumption.
As the discrete log problem is at least as hard as the Diffie-Hellman problem,
the combination of these systems gives a signature scheme tightly equivalent to
the Diffie-Hellman problem, and that also supports coupons.

Another example is a combination of the Poupard-Stern Σ-protocol that we
did already use in our RSA-based scheme and of the FDH-Rabin signature [24],
which is a EUF-KMA signature scheme. Such a combination gives a scheme equiv-
alent to integer factoring under a tight reduction which supports coupons as well.

We believe that other combinations of great interest are made possible with
our construct.

5 Conclusion

In this paper, we proposed a new generic signature scheme constructed from a
zero-knowledge identification protocol and a signature scheme. This new scheme
features a tight provable security relatively to the problems which underly the
security of its components. In addition to that, our scheme enjoys the appeal-
ing property of enabling the use of coupons. These two advantages were never
before proposed together in a signature scheme. We also proposed an efficient
application of our technique using the RSA problem which provides a high-speed
alternative to RSA-PSS.
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A Proof of Security When S Has a Self-Reducible
Domain

A trapdoor permutation is said self-reducible with respect to polynomial func-
tions SR1 : M∗R 7→ M and SR2 : X ∗R 7→ X when for a uniformly distributed
random element r ∈ R, m′ = SR1(m, r) is uniformly distributed in the message
space M, and when the pre-image σ = F−1(m) of m can be recovered from
σ′ = F−1(m′) by computing σ = SR2(σ′, r).

Examples of trapdoor self-reducible permutations are RSA [25] and Paillier
[18].4

We remind that a FDH self-reducible signature of a message m ∈ M , using a
full-domain hash HFDH and a trapdoor self-reducible permutation F consists in
computing σ = F−1(HFDH(m)). The verification is just checking that F(σ) =
HFDH(m).

In case S has a self-reducible domain, our generic construct can be slightly
modified in order to mix functions H and HFDH as shown of Fig. 5.

As before, we prove that the scheme is secure in the random oracle model,
even if the attacker is given the signature of qs messages of her choice, as well as
qh hash computations (more precisely qH and qG queries toH and G respectively).
We show that an attacker forging our scheme can be used to find the pre-image

4 For the RSA function, SR1(m, r) = m · re mod n and SR2(σ
′, r) = σ · r−1 mod n,

while for Paillier, SR1(m, (r1, r2)) = m · gr1 · r2
n mod n2 and SR2((a, b), (r1, r2)) =

(a− r1 mod n, b− r2 mod n), with obvious notations.
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Sign(m) :

Step 1:
r ←R

u ← U(r)
h ← H(u)
x ← F−1(h)

Step 2:
g ← G(m, x)
y ← V(s, r, g)

Return (x, y)

Verify(x, y, m) :

g′ ← G(m, x)
u′ ←W(α, g′, y)
h′ ← H(u′)

Return x
?
= F(h′)

Fig. 5. Our Proposed Signature Scheme with a FDH self-reducible signature

by F of a challenge c ∈ X (a problem that we call PF−1) or to find the secret s
of the zero-knowledge identification protocol (we refer to this problem as PZ),
with probability approximately equal to the attacker’s. More formally, we state
the following theorem.

Theorem 2. Let A be an adversary producing with success probability ε
and within a time bound τ an existential forgery of the proposed scheme
(Z,F), based on problems PZ and PF−1 , under a chosen-message attack
and making qs queries to the signing oracle and qH, qG queries to H and
G respectively. Then, with probability ε′, the attacker can be used to break
one of the two problem PZ and PF−1 within time τ ′ with

ε′ ≥ ε

(
1− (qG + qs)2

|G| − (qG + qs) · qs

|X|
)

and
τ ′ ≤ τ + qs(TW + TF )

where TW is the time needed for evaluating W and TF the execution time
required to compute F .

Our proof starts at the real game G0 and ends with G5. We are given a
trapdoor self-reducible permutation F and a Σ-protocol Z, as well as a random
challenge c ∈ X. Self-reducible functions SR1 and SR2 are given together with
the self-reducible permutation. The goal of our proof is to use an attacker against
our scheme to solve one of the two following problems: finding the secret s of Z,
or computing the pre-image F−1(c).

Game G0: This is the real attack game, in the random permutation model,
which includes the verification step. This means that the attack game consists
in giving the public key to the adversary, and a full access to the signing oracle.
If it outputs its forgery, one checks whether the forgery is valid or not. Note that
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the adversary is authorized to ask qs queries to the signing oracle and qh queries
to the hash oracles G. We are interested in the following event: S0 which occurs
if the verification step succeeds (and the signature is new).

Succeuf−cma
(Z,F−1)(A) = Pr[S0]. (8)

Game G1: In this game, we simulate the hash oracle and the signing oracle,
and the last verification step, as shown on Figure 6. From this simulation, we
easily see that the game is perfectly indistinguishable from the real attack, in
the random oracle model.

Pr[S1] = Pr[S0]. (9)

H
o
ra

cl
e For a hash-query H(q), such that ∃h, so that (q, h) ∈ H-List, the answer

is h. Otherwise the answer h is defined according to the following rule:

IRule H(1)

Choose a random element h ∈ H. The record (q, h)
is added to H-List.

G
o
ra

cl
e For a hash-query G(q), such that ∃g, so that (q, g) ∈ G-List, the answer is

g. Otherwise the answer g is defined according to the following rule:

IRule G(1)

Choose a random element g ∈ G. The record (q, g) is
added to G-List.

S
ig

n
o
ra

cl
e For a sign-query Sign(m), in this game, the sequence strictly follows the

definition of the proposed scheme:

IRule Sign(1)

One first picks a random r ∈ R, computes u = U(r),
then computes h = H(u) and x = F−1(h). Follows
a query to the G oracle to know g = G(m, x), and
finally one computes y = V(s, r, g). The signature is
(x, y).

V
e
ri

fy
o
ra

cl
e The game ends with the verification of the output (x, y) from the adver-

sary.
One first asks to the oracle g′ = G(m, x) and then computes u′ =
W(α, g′, y). Then one computes h′ = H(u′) and checks whether

Ver(β, x, h′)
?
= True, in which case the signature is a valid signature

of m. Once again, it is supposed that G and W are only defined on their
respective set, verifying implicitly the fact that x ∈ X and y ∈ Y . Other-
wise, this test is made within the verification step.

Fig. 6. Simulation of the Attack Game .
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Game G2:
In this new game, we do the following step before running the attacker, and

so before receiving any query from her. We pick qs random pairs (yi, gi) ∈ Y ×G.
Then for each of them, we compute ui = W(α, gi, yi). For each and every ui, we
pick a random element ρi ∈ X and compute hi = F(ρi). We store these (i.e.,
yi, gi, ui, ρi) in memory.

This makes the game indistinguishable from the previous one, as F is a
permutation and the ρi are random:

Pr[S2] = Pr[S1]. (10)

Game G3: In this game, we change the way we simulate the H oracle.

IRule H(3)

– if the query q is equal to a ui, we set h = hi

– otherwise we choose a random element ρj ∈ X and
compute h = SR1(c, ρj). We keep each ρj associated
with each query q in a memory.

The record (q, h) is added to H-List.

One can note that ρi is a valid FDH signature of ui.
Because of the permutation property of F , of the randomness of c, hi and ρ,

and of the self-reducibility of F , this game is equivalent to the previous one:

Pr[S3] = Pr[S2]. (11)

Game G4:
In this game, we number the query to signature oracle with index i. From

now, we are able to sign any message, as follows:

IRule Sign(4)

At the i-th query, if G(m, ρi) is already defined, the game
stops. Otherwise, ((m, ρi), gi) is added to G-List.
Then the returned signature of the message m is (ρi, yi).

As one can see, the signature is valid: by definition, G(m, ρi) = gi, ui =
W(α, gi, yi) and H(ui) = hi = F(ρi).

This game is indistinguishable from the previous one, except that abortions
may happen. More precisely, because ρi can not be guessed by the attacker better
than randomly (because it is the permutation image of a random element), the
fact that G(m, ρi) must not be defined introduces a factor (1− (qG + qs)/|X|)qs .

Hence, this games is such that:

Pr[S4] ≥ Pr[S3] ·
(

1− (qG + qs)
|X|

)qs

. (12)



New Signature Schemes with Coupons and Tight Reduction 21

Game G5: This game is the final one, in which we use the adversary’s forgery.
By definition, after qh hash queries, and qs signature queries, the attacker A is
able to forge a new signature (x̂, ŷ) of a message m̂ with some probability. We
now use this forgery to break one of the two supposed-hard problems.

First of all, we compute ĝ = G(m̂, x̂) and û = W(α, ĝ, ŷ). Finally, we set
ĥ = H(û). If one of these hashes were never queried by the attacker, we ask
them to the oracles. Then, two cases appear:

Case One: In the first case, û is not an ui. Then, by definition,
ĥ = SR1(c, ρj) and x̂ is the valid F-pre-image of ĥ. Because of the
self-reducibility property, one can with a call to SR2 function, find
the pre-image F−1(c):

F−1(c) = SR2(x̂, ρj)

Case Two: In the second case, û = ui, for a certain i, which means
that W(α, ĝ, ŷ) = W(α, gi, yi). As one can see, we are now in the
hypothesis of the Forking Lemma, but without having to restart the
attacker in any sense, contrarily to what is classically done when using
the Forking Lemma. Consequently, as Z is a Σ-protocol, we are able
to recover the secret from this equality, as soon as (gi, yi) 6= (ĝ, ŷ).
As û = ui, we have necessarily x̂ = xi, as the FDH signature is
a deterministic signature. Furthermore, as the forged signature is a
new signature, we must have (xi, mi, yi) 6= (x̂, m̂, ŷ), which in this
case means that (mi, yi) 6= (m̂, ŷ).

– If mi = m̂, we immediately have (gi, yi) 6= (ĝ, ŷ).
– Otherwise, if mi 6= m̂, as gi = G(mi, xi) and ĝ = G(m̂, x̂), we have

that gi 6= ĝ or a collision on G has been found by the attacker.
Because of the security of the G function, it can not happen with
a factor greater than (1− (qG + qs)/|G|)(qG+qs).

Hence, with this probability, this second case of this final game allows
to recover the secret s.

Finally, in both cases, this game can be used to solve one of the two compu-
tational problems with probability:

Pr[S5] ≥ Pr[S4] ·
(

1− (qG + qs)
|G|

)qG+qs

. (13)

Combining previous equations, one can see that

ε′ ≥ ε ·
(

1− (qG + qs)2

|G| − (qG + qs) · qs

|X|
)

.

ut


