
Self-Randomized Exponentiation Algorithms

[Published in T. Okamoto Eds., Topics in Cryptology - CT-RSA 2004 ,
vol. 2964 of Lecture Notes in Computer Science, pp. 236–249, Springer-Verlag,

2004.]

Benôıt Chevallier-Mames

Gemplus, Card Security Group
La Vigie, Avenue du Jujubier, ZI Athélia IV, 13705 La Ciotat Cedex, France

benoit.chevallier-mames@gemplus.com

http://www.gemplus.com/smart/

Abstract. Exponentiation is a central process in many public-key cryp-
tosystems such as RSA and DH. This paper introduces the concept of
self-randomized exponentiation as an efficient means for preventing DPA-
type attacks. Self-randomized exponentiation features several interesting
properties:
– it is fully generic in the sense that it is not restricted to a particular

exponentiation algorithm;
– it is parameterizable: a parameter allows to choose the best trade-off

between security and performance;
– it can be combined with most other counter-measures;
– it is space-efficient as only an additional long-integer register is re-

quired;
– it is flexible in the sense that it does not rely on certain group prop-

erties;
– it does not require the prior knowledge of the order of the group in

which the exponentiation is performed.

All these advantages make our method particularly well suited to se-
cure implementations of the RSA cryptosystem in standard mode, on
constrained devices like smart cards.

Keywords: Exponentiation, implementation attacks, fault attacks, side-
channel attacks (DPA, SPA), randomization, exponent masking, blind-
ing, RSA, standard mode, smart cards.

1 Introduction

Since the invention of the public key cryptography by Diffie and Hellman [DH76],
numerous public-key cryptosystems were proposed. Amongst those that resisted
cryptanalysis, the RSA cryptosystem [RSA78] is undoubtedly the most widely
used. Its intrinsic security relies on the difficulty of factoring large integers. In
spite of decades of intensive research, the factoring problem is still considered as

2 Benôıt Chevallier-Mames

a very hard problem, making the RSA cryptosystem secure for sensitive appli-
cations such as data encryption or digital signatures [PKC02].

Instead of trying to break the RSA at a mathematical level, cryptographers
then turned their attention to concrete implementations of RSA cryptosystems.
This gave rise to fault attacks [BDL01] and side-channel attacks [Koc96,KJJ99].
Implementation attacks profoundly modified the way algorithms should be im-
plemented.

As a general rule of thumb for preventing implementation attacks, algorithms
should be randomized. In the case of the RSA cryptosystem, there are basically
two approaches for randomizing the computation of y = xd (mod N). This can
be achieved by:

1. randomizing the input data prior to executing the exponentiation algo-
rithm [Koc96]; e.g., as
(a) x̂ ← x + r1 N for a k-bit random r1

(b) d̂ ← d + r2 φ(N) for a k-bit random r2

and then y is evaluated as y = ŷ (mod N) with ŷ = x̂d̂ (mod 2kN);
2. randomizing the exponentiation algorithm itself (e.g., [Wal02], [MDS99]).

The first approach, initiated by Kocher (see [Koc96, Section 10]), presents the
advantage of being independent of the exponentiation algorithm. It also is worth
noting that when x is the result of a probabilistic padding (e.g., OAEP [BR95] or
PSS [BR96]), there is no need to further randomize x and so the exponentiation
can, for example, be carried out as y = xd̂ (mod N) with d̂ = d + r2 φ(N) for
a random r2. Unfortunately, such a randomization of d is restricted to CRT
implementations of RSA [QC82] as the value of Euler totient function φ(N)
is usually unknown to the private exponentiation algorithm in standard (i.e.,
non-CRT) mode.1

The best representative of the second approach is the Mist algorithm by
Walter [Wal02]. Mist randomly generates a fresh addition chain for exponent d
for performing xd (mod N). To minimize the number of registers, the addition
chain is computed on-the-fly via an adaptation of an exponentiation algorithm
based on “division chains” [Wal98]. Another example is an improved version
of the sliding window method proposed in [IYTT02] . Compared to the first
approach, it allows to randomize the exponentiation without the knowledge of
φ(N) but requires a secure division algorithm for computing the division chains
or quite complicated management.

This paper presents a novel method to randomize the execution of the ex-
ponentiation, in order to prevent Differential Power Analysis (DPA) [KJJ99],
combining the advantages of the two approaches: As in the first approach, it
does not impose a particular exponentiation algorithm; and as in the second
approach, it is a randomized algorithm (in particular, it does not require the

1 When the public exponent e is known and not too large, one can randomize the
private exponent as d̂ ← d + r(ed − 1). Unfortunately, in most cases, e is unknown
(i.e., not available to the private exponentiation algorithm).

Self-Randomized Exponentiation Algorithms 3

knowledge of φ(N) nor of e in a private RSA exponentiation). Our method in-
troduces the concept of self-randomized exponentiation, meaning that exponent
d is used itself as an additional source of randomness in the exponentiation
process. Self-randomized exponentiation only assumes that exponent bits are
scanned from the most significant position and so applies to most exponentia-
tion algorithms [MvV97, Chapter 14]. It can also be combined with most other
counter-measures such as randomizing the exponent prior to the exponentia-
tion. Finally, our method is not restricted to exponentiation in RSA groups and
equally applies to other groups such as the group of points of an elliptic curve
over a finite field [Kob87,Mil86].

The rest of this paper is organized as follows. The next section briefly re-
views exponentiation algorithms and presents the general principle behind self-
randomized exponentiation. In Section 3, two different, self-randomized expo-
nentiation algorithms (and variants thereof) are detailed. Section 4 presents
equivalent versions but without branching instructions, so that Simple Power
Analysis (SPA) [KJJ99] is also prevented. It also presents a version resisting
against a powerful attacker able to “reverse” the exponentiation algorithm along
with other further optimizations. Finally, Section 5 concludes the paper.

2 Self-Randomized Exponentiation

2.1 Classical exponentiation algorithms

There exist two main families of exponentiation algorithms for evaluating the
value of y = xd (mod N), according to the direction the bits of exponent d are
scanned. This paper is only concerned with left-to-right algorithms (i.e., scanning
d from the most significant position to the least significant position), including
the square-and-multiply algorithm and its k-ary variants, the sliding-window
algorithms, . . . (see [MvV97, Chapter 14]). Left-to-right algorithms require fewer
memory and allow the use of precomputed powers, xi (mod N), for speeding up
the computation of y.

2.2 General principle

Let d = (dl, . . . , d0)2 =
∑l

i=0 di 2i (with di ∈ {0, 1}) denote the binary represen-
tation of exponent d. Defining

dk→j := (dk, . . . , dj)2 =
∑

k≥i≥j

di 2i−j ,

left-to-right exponentiation algorithms share the common feature that an ac-
cumulator is used throughout the computation for storing the value of xdl→i

(mod N) for decreasing i’s until the accumulator contains the value of y =
xdl→0 = xd (mod N).

4 Benôıt Chevallier-Mames

For example, the square-and-multiply algorithm exploits the recurrence re-
lation

xdl→i = (xdl→i+1)2 · xdi

with xdl→l = xdl . Therefore, writing at iteration i the value of xdl→i in accumu-
lator R0, we obtain the algorithm of Fig. 1.

Input: x, d = (dl, . . . , d0)2
Output: y = xd (mod N)

R0 ← 1; R1 ← x; i ← l
while (i ≥ 0) do

R0 ← R0 ·R0 (mod N)
if (di = 1) then R0 ← R0 ·R1 (mod N)
i ← i− 1

endwhile

return R0

Fig. 1. Square-and-multiply algorithm

Building on the earlier works of [CJRR99,CJ01], we use an additive splitting
of the form

xd = xd−a · xa

for a random a, as a means to mask exponent d. A straightforward application
of this splitting is inefficient as it roughly doubles the running time: both xd−a

and xa need to be computed.
The main idea behind self-randomized exponentiation consists in taking (part

of) d as a source of randomness. So, random a in the above splitting is chosen
equal to dl→i, for a random i, since the value of xd→i is available in the accumu-
lator and needs not to be computed. There are various ways to apply this idea.
The next sections present several realizations.

3 Basic Algorithms

3.1 First algorithm

Our first algorithm relies on the simple observation that, for any l ≥ ij ≥ 0, we
have

xd = xdl→0

= xdl→0−dl→i1 · xdl→i1

= x(dl→0−dl→i1)−dl→i2 · xdl→i1 · xdl→i2

= . . .

= x(((dl→0−dl→i1)−dl→i2)−dl→i3)···−dl→if · xdl→i1 · xdl→i2 · xdl→i2 · · ·xdl→if .

Self-Randomized Exponentiation Algorithms 5

If the ij ’s are randomly chosen, the exponentiation process becomes proba-
bilistic. A Boolean random variable ρ is used to determine whether or not the
current loop index i belongs to the set {i1, . . . , if}. If so, exponent d is replaced
with d− dl→ij . This is illustrated in the next figure.

�������
�������
�������

�������
�������
�������

d

d− dl→ij

ijl 0

dl→ij

dl→ij

dl→ij

dij−1→0

Fig. 2. Masking of exponent d (I)

As in the classical left-to-right exponentiation algorithms, a first accumula-
tor, R0, is used to keep the value of xdl→i . We also use a second accumulator,
R1, to keep the value of

∏
ij≥i xdl→ij . To ensure the correctness of the process,

the randomization step d ← d−dl→ij cannot modify the (l− ij +1) most signif-
icant bits of d (i.e., dl→ij). This latter condition is guaranteed by checking that
dij−1→0 ≥ dl→ij (see Fig. 2).

Applied to the classical square-and-multiply algorithm, we get the following
algorithm.

Input: x, d = (dl, . . . , d0)2
Output: y = xd (mod N)

R0 ← 1; R1 ← 1; R2 ← x; i ← l
while (i ≥ 0) do

R0 ← R0 ·R0 (mod N)
if (di = 1) then R0 ← R0 ·R2 (mod N)
ρ ←R {0, 1}
if ((ρ = 1) ∧ (di−1→0 ≥ dl→i)) then

d ← d− dl→i

R1 ← R1 ·R0 (mod N)
endif
i ← i− 1

endwhile
R0 ← R0 ·R1 (mod N)

return R0

Fig. 3. Self-randomized square-and-multiply algorithm (I)

6 Benôıt Chevallier-Mames

Remark 1. In Fig. 3, as at iteration i = ij , the updating step, d ← d − dl→i,
does not modify the (l − i + 1) most significant bits of d, it can be equivalently
replaced with di−1→0 ← di−1→0 − dl→i.

Analysis. We remark that the randomization step (i.e., d ← d−dl→ij
) modifies

the (l−ij+1) least significant bits of d. Furthermore, the “consistency” condition
(i.e., dij−1→0 ≥ dl→ij

) implies that only about the lower half of exponent d is
randomized. For the RSA cryptosystem with small public exponent, this is not an
issue since such a system leaks half the most significant bits of the corresponding
private exponent d [Bon99, Section 4.5].

A simple variant. The previous methodology applies when the randomization
step is generalized to:

d ← d− g · dl→ij

for some random g such that dij−1→0 ≥ g · dl→ij . The second accumulator (say
R1, cf. Fig. 3) should then be updated accordingly as R1 ← R1 ·R0

g (mod N).
Of particular interest is the value g = 2τ as the operation g · dl→ij amounts to
a shifting and the evaluation of R0

g (mod N) amounts to τ squarings. Again
with the example of the square-and-multiply algorithm, we have:

Input: x, d = (dl, . . . , d0)2
Output: y = xd (mod N)

R0 ← 1; R1 ← 1; R2 ← x; i ← l
while (i ≥ 0) do

R0 ← R0 ·R0 (mod N)
if (di = 1) then R0 ← R0 ·R2 (mod N)
ρ ←R {0, 1}; τ ←R {0, . . . , T}
if ((ρ = 1) ∧ (di−1→τ ≥ dl→i)) then

di−1→τ ← di−1→τ − dl→i

R3 ← R0

while (τ > 0) do
R3 ← R3

2 (mod N); τ ← τ − 1
endwhile
R1 ← R1 ·R3 (mod N)

endif
i ← i− 1

endwhile
R0 ← R0 ·R1 (mod N)

return R0

Fig. 4. Self-randomized square-and-multiply algorithm (I’)

Note that, at iteration i = ij , the “consistency” condition di−1→0 ≥ 2τ dl→i

is replaced with the more efficient test di−1→τ ≥ dl→i and the updating step

Self-Randomized Exponentiation Algorithms 7

d ← d−2τ dl→i is replaced with dl→τ ← dl→τ−dl→i ⇔ di−1→τ ← di−1→τ−dl→i,
as mentioned in Remark 1.

Bound T should be chosen as the most appropriate trade-off between the
randomization of the most significant bits of d and the efficiency in the evaluation
of τ squarings, for a τ randomly drawn in {0, . . . , T}.

While it also randomizes the upper half of exponent d, the algorithm of Fig. 4
requires an additional register for computing R0

2τ

. The next section shows how
to remove this drawback.

3.2 Second algorithm

Our first algorithm (Fig. 3) only randomizes the lower half of exponent d as
d ← d−dl→ij

; the restriction coming from the “consistency” condition imposing
a half-sized masking. In order to mask the whole value of d, we use the additional
trick that

dl→ij−cj = (dl→ij−cj − dl→ij) + dl→ij

for any ij ≥ cj ≥ 0. Actually, we successively apply the methodology of our first
algorithm to sub-exponent dl→ij−cj .

2 Moreover, to avoid the use of additional
registers, we only perform one randomization at a time. In other words, if we
update exponent d as depicted in the next figure

�������
�������
�������

�������
�������
�������

l

d

ij − cj

d

dl→ij−cj
− dl→ij

ij 0

dl→ij

dl→ij

dl→ij−cj

dl→ij

dij−1→ij−c

Fig. 5. Masking of exponent d (II)

a new updating step of exponent d will only be permitted after the complete eval-
uation of xdl→ij−cj (mod N). A Boolean “semaphore”, σ, keeps track whether
updating is permitted or not.

From Fig. 5, we observe that the (l − ij + 1) most significant bits of d (i.e.,
dl→ij) remain unchanged by the randomization step if

{
dij−1→ij−cj ≥ dl→ij ,

(ij − 1)− (ij − cj) ≥ l − ij ⇐⇒ cj ≥ l − ij + 1 .

2 Our first algorithm corresponds to the case cj = ij ,∀j.

8 Benôıt Chevallier-Mames

We set cj = l − ij + 1 + νj for some nonnegative integer νj . Together with
condition ij ≥ cj ≥ 0, this implies 2ij ≥ l + 1 + νj .

Remark 2. If νj is equal to 0, the “consistency” condition (i.e., dij−1→ij−cj ≥
dl→ij

) is satisfied half of time, approximating dij−1→ij−c and dl→ij
as (l−ij +1)-

bit randoms. In other words, if νj = 0, half of time randomization is possible. A
larger value for νj increases the success probability of the consistency condition
(and thus of the randomization). On the other hand, it also reduces the possible
counter indexes i satisfying the condition 2ij ≥ l + 1 + νj .

Figure 6 presents the resulting algorithm corresponding to the square-and-
multiply algorithm. For all j, the value of νj is taken equal to 0 (and thus
cj = l − ij + 1).

Input: x, d = (dl, . . . , d0)2
Output: y = xd (mod N)

R0 ← 1; R1 ← 1; R2 ← x; i ← l; c ← −1; σ ← 1
while (i ≥ 0) do

R0 ← R0 ·R0 (mod N)
if (di = 1) then R0 ← R0 ·R2 (mod N)
if ((2i ≥ l + 1) ∧ (σ = 1)) then c ← l− i + 1 [‡]
else σ ← 0
ρ ←R {0, 1}
ε ← ρ ∧ (di−1→i−c ≥ dl→i) ∧ σ
if (ε = 1) then

R1 ← R0; σ ← 0
di−1→i−c ← di−1→i−c − dl→i

endif
if (c = 0) then

R0 ← R0 ·R1 (mod N); σ ← 1
endif
c ← c− 1; i ← i− 1

endwhile

return R0

Fig. 6. Self-randomized square-and-multiply algorithm (II)

4 Enhanced Algorithms

4.1 Side-Channel atomicity

As presented in the previous section, our algorithms involve numerous branchings
and so, although randomized, might be vulnerable to SPA-type attacks [KJJ99].

Self-Randomized Exponentiation Algorithms 9

A generic yet efficient technique, called “side-channel atomicity” [CCJ], al-
lows to remove branching conditions at negligible cost. As this is not the main
subject of this paper and due to lack of space, we present hereafter, without any
further explanation, an atomic version of our first algorithm (Fig. 3). An atomic
version of our second algorithm (Fig. 6) can be found in Appendix A.

Input: x, d = (dl, . . . , d0)2
Output: y = xd (mod N)

R0 ← 1; R1 ← 1; R2 ← x; i ← l; k ← 0; ε = 0
while (i ≥ 0) do

Rε ← R0 ·Rε+2k (mod N)
k ← k ⊕ (di ∧ ¬ε)
d ← d + dl→i − dl→i × (1 + ε)
i ← i− (¬k ∧ ¬ε)
ρ ←R {0, 1}
ε ← ρ ∧ ¬k ∧ ¬ε ∧ (di−1→0 ≥ dl→i)

endwhile
R0 ← R0 ·R1 (mod N)

return R0

Fig. 7. Atomic self-randomized square-and-multiply algorithm (I)

4.2 Reversibility

Throughout this section, we assume that our algorithms are given in a form free
of conditional branchings (e.g., by using side-channel atomicity). We will now
study their respective strengths against a very powerful imaginary adversary
able to distinguish the performed (modular) multiplications. Algorithms I and
II involve four types of multiplication:

S : R0 ← R0 ·R0 (mod N)
M : R0 ← R0 ·R2 (mod N)
C1 : R1 ← R0 ·R1 (mod N)
C2 : R0 ← R0 ·R1 (mod N)

according to the registers used for the multiplication. Provided that such an
attacker makes no errors, Algorithms I and II can be reversed and the value of
exponent d recovered. The reversing algorithms are presented in Fig. 8.

We insist that the assumption of recovering the exact sequence of multiplica-
tions is unrealistic for present-day cryptographic devices as they include various
countermeasures to purposely prevent the distinction between S, M and Ci.
Even under such a strong attack scenario, Algorithm II can be slightly modified
in order to make the attack impractical.

10 Benôıt Chevallier-Mames

Input: L = (Ll′ , . . . , L0)
Output: d

u ← 0; d′ ← 0; i ← l′

while (i ≥ 0) do
case

(Li = S) : d′ ← 2d′

(Li = M) : d′ ← d′ + 1
(Li = C1) : u ← u + d′

endcase
i ← i− 1

endwhile

return (u + d′)

(a) Algorithm I

Input: L = (Ll′ , . . . , L0)
Output: d

d′ ← 0; j ← l; i ← l′

while (i ≥ 0) do
case

(Li = S) : d′ ← 2d′

(Li = M) : d′ ← d′ + 1

(Li = C2) : d′ ← d′ + D[l+j+1
2

]
endcase
if (Li−1 = S) then D[j] ← d′; j ← j − 1
i ← i− 1

endwhile

return d′

(b) Algorithm II

Fig. 8. Recovering exponent d in self-randomized exponentiation algorithms by distin-
guishing all the involved multiplications

Algorithm II (Fig. 6) is constructed by choosing parameter νj = 0 for all j.
In fact, parameter νj can be any nonnegative integer such that 2ij ≥ l + 1 + νj

(cf. Remark 2). Hence, the largest possible value for νj is 2ij − l − 1 and thus,
since νj ≥ 0, parameter cj = l − ij + 1 + νj can take any value in the set
{l − ij + 1, . . . , ij}. We generalize our second algorithm by randomly picking cj

in the set {l − ij + 1, . . . , ij}; i.e., by replacing Line ‡ in Fig. 6 by

if ((2i ≥ l + 1) ∧ (σ = 1)) then c ←R {l − i + 1, i}
Doing so we obtain a third algorithm (Algorithm III). Its side-channel atomic

version is fully given in Appendix A.

Provided that multiplications can be distinguished, reversing Algorithm III
translates into the successful execution of the following algorithm:

Since the attacker does not know the random cj chosen in the set {l − ij +
1, ij}, she has to to try all possible values. Such a exhaustive rapidly becomes
impractical, rendering our third algorithm even secure against very powerful
adversaries.

4.3 Further optimizations

The frequency of appearance that Boolean variable ρ = 1 can be seen as a tuning
parameter for choosing the best trade-off between performance and security:
more randomization penalize the running time and fewer randomization eases
the exhaustive search.

A good way to lower the cost of additional operations consists in slightly
modifying the random generator outputting ρ so that when Hamming weight
of d − a (a may have several definitions according to Algorithm I, II, or III) is

Self-Randomized Exponentiation Algorithms 11

Input: L = (Ll′ , . . . , L0)
Output: d

d′ ← 0; j ← l; jold ← l; i ← l′

while (i ≥ 0) do
case

(Li = S) : d′ ← 2d′

(Li = M) : d′ ← d′ + 1

(Li = C2) : for l+j+1
2

≤ jtry ≤ jold, try d′ ← d′ + D[jtry]; jold ← j
endcase
if (Li−1 = S) then D[j] ← d′; j ← j − 1
i ← i− 1

endwhile

return d′

Fig. 9. Exhaustive search on Algorithm III

weaker than Hamming weight of d , ρ has a higher probability of being a 1 and
conversely. By this trick, the self-randomized algorithm will tend to select the
case which has the weakest Hamming weight, that is, the fastest branch. We note
however that the algorithm cannot always select the fastest branch as otherwise
it becomes deterministic and so is more easily reversible.

4.4 Average timing

In the following, we give a table with complexity of different algorithms, in term
of multiplications.

Table 1. Average number of modular multiplications to perform an exponentiation of
length 1024

S, M, C1, C2
Square and Multiply Our algorithms
naive random exp.3 (I) (II) (III)

Multiplications 1536 1536 + 96 1536 + 512× ρ̄ 1536 + 10 1536 + 10

The overhead factor of Algorithms II and III (10) corresponds in fact to an
upper bound of log2 d. This is a very small quantity but it provides an interesting
entropy: the number of possible randomization for a given exponent is superior
to

(
10
512

)
> 264.

3 By random exponent d, we mean the use of d̂ as explained in the introduction, with
a random r2 of size 64 bits.

12 Benôıt Chevallier-Mames

5 Conclusion

This paper introduced the concept of self-randomized exponentiation as an ef-
ficient means for preventing DPA-type attacks. Three different such algorithms
(and some SPA-protected variants thereof) were described.

Self-randomized exponentiation presents the following interesting properties:

– it is fully generic in the sense that it is not restricted to a particular expo-
nentiation algorithm;

– it is parameterizable: a parameter allows to choose the best trade-off between
security and performance;

– it can be combined with most other counter-measures;
– it is space-efficient as only an additional long-integer register is required;
– it is flexible in the sense that it does not rely on certain group properties;
– it does not require the prior knowledge of the order of the group in which

the exponentiation is performed.

Of independent interest, the notion of reversibility in self-randomized expo-
nentiation algorithms was defined and a concrete construction was given.

Acknowledgements

The author would like to thank the anonymous referees for their helpful com-
ments that allow us to improve the readability of this paper. Thanks also go to
Marc Joye for his careful attention and continuous support in this research.

References

[BDL01] Dan Boneh, Richard A. DeMillo, and Richard J. Lipton. On the importance
of eliminating errors in cryptographic computations. Journal of Cryptology,
14(2):101–119, 2001.

[Bon99] Dan Boneh. Twenty years of attacks on the RSA cryptosystem. Notices
of the AMS, 46(2):203–213, 1999.

[BR95] Mihir Bellare and Phillip Rogaway. Optimal asymmetric encryption. In
A. De Santis, editor, Advances in Cryptology – EUROCRYPT ’94, volume
950 of Lecture Notes in Computer Science, pages 92–111. Springer-Verlag,
1995.

[BR96] Mihir Bellare and Phillip Rogaway. The exact security of digital signatures
- How to sign with RSA and Rabin. In U. Maurer, editor, Advances in
Cryptology – EUROCRYPT ’96, volume 1070 of Lecture Notes in Computer
Science, pages 399–416. Springer-Verlag, 1996.

[CJ01] Christophe Clavier and Marc Joye. Universal exponentiation algorithm:
A first step towards provable SPA-resistance. In Ç.K. Koç, D. Naccache,
and C. Paar, editors, Cryptographic Hardware and Embedded Systems –
CHES 2001, volume 2162 of Lecture Notes in Computer Science, pages
300–308. Springer-Verlag, 2001.

Self-Randomized Exponentiation Algorithms 13

[CJRR99] Suresh Chari, Charanjit S. Jutla, Josyula R. Rao, and Pankaj Rohatgi.
Towards sound approaches to counteract power-analysis attacks. In
M. Wiener, editor, Advances in Cryptology – CRYPTO ’99, volume 1666 of
Lecture Notes in Computer Science, pages 398–412. Springer-Verlag, 1999.

[CCJ] Benôıt Chevallier-Mames, Mathieu Ciet, and Marc Joye. Low cost solutions
for preventing simple side-channel power analysis: Side-channel atomicity.
To appear. Preprint available on IACR ePrint.

[DH76] Whitfield Diffie and Martin E. Hellman. New directions in cryptography.
IEEE Transactions on Information Theory, IT-22(6):644–654, 1976.

[IYTT02] Kouichi Itoh, Jun Yajima, Masahiko Takenaka, and Naoya Torii. Dpa
countermeasures by improving the window method. In Burton S. Kaliski
Jr., Ç.K. Koç, and C. Paar, editors, Cryptographic Hardware and Embedded
Systems– CHES ’02, volume 2523 of Lecture Notes in Computer Science,
pages 303–317. Springer-Verlag, 2002.

[KJJ99] Paul Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis.
In M. Wiener, editor, Advances in Cryptology – CRYPTO ’99, volume 1666
of Lecture Notes in Computer Science, pages 388–397. Springer-Verlag,
1999.

[Kob87] Neal Koblitz. Elliptic curve cryptosystems. Mathematics of Computation,
48(177):203–209, 1987.

[Koc96] Paul Kocher. Timing attacks on implementations of Diffie-Hellman, RSA,
DSS, and other systems. In N. Koblitz, editor, Advances in Cryptology –
CRYPTO ’96, volume 1109 of Lecture Notes in Computer Science, pages
104–113. Springer-Verlag, 1996.

[MDS99] Thomas S. Messerges, Ezzy A. Dabbish, and Robert H. Sloan. Power
analysis attacks of modular exponentiation in smartcards. In Ç.K. Koç
and C. Paar, editors, Cryptographic Hardware and Embedded Systems–
CHES ’99, volume 1717 of Lecture Notes in Computer Science, pages 144–
157. Springer-Verlag, 1999.

[Mil86] Victor S. Miller. Use of elliptic curves in cryptography. In H.C. Williams,
editor, Advances in Cryptology – CRYPTO ’85, volume 218 of Lecture
Notes in Computer Science, pages 417–426. Springer-Verlag, 1986.

[MvV97] Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone. Handbook
of applied cryptography. CRC Press, 1997.

[PKC02] PKCS#1 v2.1: RSA cryptography standard. RSA Laboratories, June 14,
2002.

[QC82] Jean-Jacques Quisquater and Chantal Couvreur. Fast decipherment algo-
rithm for RSA public-key cryptosystem. Electronics Letters, 18:905–907,
1982.

[RSA78] Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A method for ob-
taining digital signatures and public-key cryptosystems. Communications
of the ACM, 21(2):120–126, 1978.

[Wal98] Colin D. Walter. Exponentiation using division chains. IEEE Transactions
on Computers, 47(7):757–765, 1998.

[Wal02] Colin D. Walter. Mist: An efficient, randomized exponentiation algorithm
for resisting power analysis. In B. Preneel, editor, Topics in Cryptology –
CT-RSA 2002, volume 2271 of Lecture Notes in Computer Science, pages
53–66. Springer-Verlag, 2002.

14 Benôıt Chevallier-Mames

A Side-Channel Atomic Exponentiation Algorithms

Input: x, d = (dl, . . . , d0)2
Output: y = xd (mod N)

R0 ← 1; R1 ← 1; R2 ← x; i ← l; k ← 0; ε = 0
σ ← 1; c ← −1
while (i ≥ 0) do

θ ← (c = 0)
R0 ← R0 ·Rθ+2k (mod N)
k ← k ⊕ (di ∧ ¬θ); i ← i− (¬k ∧ ¬θ)
σ ← (σ ∨ θ) ∧ (2i ≥ l + 1)
c ← ¬σ(c− ¬k) + (l − i + 1)× σ
ρ ←R {0, 1}
ε ← ρ ∧ ¬k ∧ σ ∧ (di−1→i−c ≥ dl→i)
σ ← σ ∧ ¬ε
di−1→i−c ← di−1→i−c + dl→i − dl→i × (1 + ε)
R1 ← R¬ε

endwhile

return R0

Fig. 10. Atomic self-randomized square-and-multiply algorithm (II)

Input: x, d = (dl, . . . , d0)2
Output: y = xd (mod N)

R0 ← 1; R1 ← 1; R2 ← x; i ← l; k ← 0; ε = 0
σ ← 1; c ← −1
while (i ≥ 0) do

θ ← (c = 0)
R0 ← R0 ·Rθ+2k (mod N)
k ← k ⊕ (di ∧ ¬θ); i ← i− (¬k ∧ ¬θ)
σ ← (σ ∨ θ) ∧ (2i ≥ l + 1)
γ ←R {l − i + 1, i}
c ← ¬σ(c− ¬k) + γ × σ
ρ ←R {0, 1}
ε ← ρ ∧ ¬k ∧ σ ∧ (di−1→i−c ≥ dl→i)
σ ← σ ∧ ¬ε
di−1→i−c ← di−1→i−c + dl→i − dl→i × (1 + ε)
R1 ← R¬ε

endwhile

return R0

Fig. 11. Atomic self-randomized square-and-multiply algorithm (III)

