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Abstract. Strong security notions often introduce strong constraints
on the construction of cryptographic schemes: semantic security implies
probabilistic encryption, while the resistance to existential forgeries re-
quires redundancy in signature schemes. Some paddings have thus been
designed in order to provide these minimal requirements to each of them,
in order to achieve secure primitives.

A few years ago, Coron et al. suggested the design of a common construc-
tion, a universal padding, which one could apply for both encryption and
signature. As a consequence, such a padding has to introduce both ran-
domness and redundancy, which does not lead to an optimal encryption
nor an optimal signature.

In this paper, we refine this notion of universal padding, in which a part
can be either a random string in order to introduce randomness or a zero-
constant string in order to introduce some redundancy. This helps us to
build, with a unique padding, optimal encryption and optimal signature:
first, in the random-permutation model, and then in the random-oracle
model. In both cases, we study the concrete sizes of the parameters, for
a specific security level: The former achieves an optimal bandwidth.

1 Introduction

When one deals with public-key encryption, chosen-ciphertext security [22] is
by now the basic required security notion. Similarly, for signatures, resistance
to existential forgeries against adaptive chosen-message attacks [10] is also the
minimal requirement. But strong security is not enough, it has to be achieved
in an efficient way, according to various criteria: time, bandwidth, but also size
of the code.

The first two above criteria are the most usual goals, and improvements
are continuously proposed. When dealing with public-key cryptography, one can
indeed note that fast paddings have been proposed for encryption [3,19] and
signature [4]. About the bandwidth, Phan and Pointcheval recently addressed
this problem for encryption [20, 21], and proposed an optimal padding, w.r.t. this
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criteria, by avoiding redundancy. Most signatures with message-recovery [18, 16,
4] improve the bandwidth, but these solutions are not optimal, since redundancy
and randomization are always added. The notable exception is the recent idea
of Katz and Wang, that achieves tight security by using FDH, but also PSS-R,
constructions [4] with only one additional bit, that is not random but dependent
on the message [13].

The last criteria has been more recently considered, by Coron, Joye, Naccache
and Paillier [6], with the so-called notion of universal paddings: the code size is
reduced by using a common padding for both encryption and signature. For
such a goal, they used a variant of PSS, called PSS-ES. Other solutions have
thereafter been proposed, including those of Komano and Ohta [14]. But in
all these constructions, the resulting encryption contains redundancy, and the
signature is probabilistic.

1.1 Contribution

In this paper, we address this problem of efficiency, trying to optimize the three
above criteria at the same time: for a time-efficient construction, we consider
simple paddings; for a good bandwidth, we extend the work of [20, 21], by avoid-
ing not only redundancy in encryption, but also randomization in signatures;
additionally, we use the idea of the Katz-Wang construction [13] in order to
achieve tight security in signature. Finally, about the size of the code, we opti-
mize the common parts in the two paddings (for signature and encryption), by
giving a relaxed version of universal padding. Furthermore, we analyze the secu-
rity of these paddings, to be used for both encryption and signature, but in the
extreme case where the same primitive (trapdoor one-way permutation which
might optionally be assumed claw-free) is used for encryption and signature, at
the same time, as already suggested in [12]: the same public/private key pair is
used for encryption and signature.

More precisely, we study two paddings with the above universal property.
The first one is based on the Full-Domain Permutation construction, studied
in [11] for signature and in [20], for encryption, which can be proved optimal
with the three above criteria in the random-permutation model. Hence the name
of Optimal Permutation-based Padding (OPbP). Then, we also review the OAEP
3-rounds construction [20,21] (OAEP3r), in the random-oracle model [2].

1.2 Redundancy and Randomness

A basic requirement for encryption, to achieve semantic security, is a probabilistic
mechanism which is necessary to make distributions of ciphertexts indistinguish-
able. But until recently, chosen-ciphertext security was thought to furthermore
imply redundancy in the ciphertext (for a kind of proof of knowledge/awareness
of the plaintext [3, 1, 7].) However, this was not mandatory [20, 21], at least in the
random-oracle model and in the ideal-cipher model. Existence of such schemes
in the standard model is still an open problem.
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Similarly, for signature, to prevent forgeries, some redundancy in the message-
signature pair (or unique string in case of message-recovery feature) is required,
which should be hard to satisfy without the signing key. But most of the sig-
nature schemes are probabilistic [23,17,4, 8], while it is not necessary (e.g. the
FDH-signature, but with loose security). Recently, Katz and Wang proved that
it was possible to achieve tight security with a deterministic construction very
close to FDH-signature or PSS-R, by adding a single bit that is not random but
dependent on the message [13]. More precisely, this additional bit should be not
predictable by anyone else than the signer, and so Katz and Wang proposed that
it results from a PRF computation.

1.3 Universal Paddings

The goal of universal padding is to design a padding which can not only be
applied for signature and for encryption independently, but for both at the same
time, with the same user’s keys: the public key is used for both encryption and
verification, while the private key is used for both decryption and signature.

In the security model, the adversaries (against either semantic security or
existential unforgeability) are given access to both the signing and decryption
oracles, which is not the security scenario considered when one deals with en-
cryption and signature, independently. The decryption oracle may indeed help
to forge signatures, and vice-versa.

2 Security Model

2.1 Signature Schemes

Digital signature schemes are the electronic version of handwritten signatures for
digital documents: a user’s signature on a message m is a string which depends
on m, on public and secret data specific to the user and —possibly— on randomly
chosen data, in such a way that anyone can check the validity of the signature
by using public data only. In this section, we briefly review the main security
notions [10].

Definitions. A signature scheme S = (K, S, V) is defined by the three following
algorithms:

— The key generation algorithm K. On input 1%, which is a formal notation for
a machine with running time polynomial in & (1* is indeed k in basis 1), the
algorithm K produces a pair (pk,sk) of matching public and private keys.
Algorithm KC is probabilistic. The input k is called the security parameter.
The sizes of the keys, or of any problem involved in the cryptographic scheme,
will depend on it, in order to achieve an appropriate security level (the
expected minimal time complexity of any attack).
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— The signing algorithm S. Given a message m and a pair of matching public
and private keys (pk,sk) S produces a signature o. The signing algorithm
might be probabilistic.

— The wverification algorithm V. Given a signature o, a message m, or just
a part (possibly empty), and a public key pk, V possibly extracts the full
message m and tests whether o is a valid signature of m with respect to pk.
In general, the verification algorithm need not be probabilistic.

Forgeries and Attacks. The simpler goal for an adversary is to build a
new acceptable message-signature pair. This is called existential forgery. The
corresponding security level is called existential unforgeability (EUF). On the
other hand, the strongest scenario one usually considers is the so-called adaptive
chosen-message attack (CMA), where the attacker can ask the signer to sign
any message of its choice, in an adaptive way: it can adapt its queries according
to previous answers. When signature generation is not deterministic, there may
be several signatures corresponding to a given message. And then the notion
of existential forgery may be ambiguous [24]: the original definition [10] says
the adversary wins if it manages to forge a signature for a new message. Non-
malleability [24] says the adversary wins if it manages to forge a new signature.

Thereafter, the security notion one wants to achieve is (at least) the resistance
to existential forgeries under adaptive chosen-message attacks (EUF/CMA): one
wants that the success probability of any adversary A with a reasonable time is
small, where

Succe/™(A) = Pr [ (pk, sk) — K(1¥), (m, o) — AS*(pk) : V(pk,m,0) = 1] .

2.2 Public-Key Encryption

The aim of a public-key encryption scheme is to allow anybody who knows the
public key of Alice to send her a message that she will be the only one able to
recover, granted her private key.

Definitions. A public-key encryption scheme S = (K, &, D) is defined by the
three following algorithms:

— The key generation algorithm K. On input 1¥ where k is the security pa-
rameter, the algorithm K produces a pair (pk,sk) of matching public and
private keys. Algorithm KC is probabilistic.

— The encryption algorithm €. Given a message m and a public key pk, &
produces a ciphertext ¢ of m. This algorithm may be probabilistic. In the
latter case, we write Ep(m;r) where r is the random input to £.

— The decryption algorithm D. Given a ciphertext ¢ and the private key sk,
Dsk(c) gives back the plaintext m. This algorithm is necessarily deterministic.
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Security Notions. The most widely admitted goal of an adversary is the dis-
tinction of ciphertexts (IND). One thus wants to make it unable to distinguish
between two messages, chosen by the adversary, which one has been encrypted,
with a probability significantly better than one half. On the other hand, an at-
tacker can play many kinds of attacks. The strongest scenario consists in giving
a full access to the decryption oracle, which on any ciphertext answers the cor-
responding plaintext. There is of course the natural restriction not to ask the
challenge ciphertext to that oracle. This scenario which allows adaptively chosen
ciphertexts as queries to the decryption oracle is named the chosen-ciphertext at-
tack (CCA). Therefore, for any adversary A, seen as a 2-stage attacker (A, As),
its advantage Adve d/cca (A) should be negligible, where

Advg]d/cca(.A) — 9% Pr (pka Sk) — K(lk)a (DZ;LO?ml’ S) — A1D5k(pk)v -1

b | ¢ = Epk(mp; 1) + Ay *(mo, m1, s,¢) =b

)

2.3 Signature and Encryption

As already noticed, our motivation is to design a unified padding which one
could use for both encryption and signature at the same time, and furthermore
with the same asymmetric primitive. The goals of an adversary are thus the
same as above: build an existential forgery (EUF) against the signature scheme,
or distinguish ciphertexts (IND) against the encryption scheme. However, the
means are the combination of the above attacks: it has access to both the signing
oracle and the decryption oracle in a fully adaptive way, hence the CMA + CCA
notation.

2.4 Claw-Free Permutations

In [13], Katz and Wang has shown that, by using trapdoor permutations induced
by claw-free permutations, one can obtain a variant of FDH (just adding one
more bit) with tight reduction. We can also use this technique for our construc-
tion. The existence of claw-free permutations seems be reasonable. In fact, any
random self-reducible permutation can be seen as a trapdoor permutations in-
duced by claw-free permutations [9] and almost all known examples of trapdoor
permutations are self-reducible.

Definition 1 (Claw-Free Permutations). A family of claw-free permutations
is a tuple of algorithms {Gen; f;; g;|i € I} for an index set I such that:

— Gen outputs a random index i and a trapdoor td.

— fi,9; are both permutations over the same domain D;.

— there is an efficient sampling algorithm which, on index i, outputs a random
S Dl

— f7 (the inverse of f;) and g; " (the inverse of g;) are both efficiently com-
putable given the trapdoor td.
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A claw is a pair (xg,z1) such that f(xo) = g(x1). Probabilistic algorithm A is
said to (t,€)-break a family of claw-free permutations if A runs in time at most
t and outputs a claw with probability greater than e:

Pr [(i,td) — Gen(1%), (zg, 1) « A(i) : fi(zo) = gi(xl)} > €

A family of claw-free permutations is (t,€)-secure if no algorithm can (t, €)-break
it.

3 Optimal Permutation-based Padding

3.1 Owur Optimal Proposal

In the following, we propose a universal padding, based on the construction
from [20], in the random-permutation model. It is optimal both for signing and
encrypting, i.e., that uses only 82 bits of randomness for encrypting and only 82
bits of redundancy for signing. After the description, we show it is indeed secure,
in the random-permutation model. In the next section, we provide another con-
struction, based on the OAEP-3 rounds construction from the same paper [20],
which is secure in the random-oracle model, but just near optimal (161 bits of
overhead instead of 82).

The encryption and signature schemes use a permutation P, that we assume
to behave like a truly random permutation. Let k be a security parameter. Let
wpk : {0,1}" — {0,1}” be a trapdoor one-way permutation (whose inverse is
called g ). Messages to sign or to encrypt with our padding function will be
of size £ = n — k — 1. The symbol “||” denotes the bit-string concatenation and
identifies {0, 1}* x {0,1}¢ x {0,1} to {0,1}". Finally, in the following, PRF,()
designs a PRF that uses a secret key o.

The Padding. The padding is quite simple, since it takes as input a single bit ~,
the message m and an additional data r, and OPbP(y,m,r) = P(y||m/|r) = t|ju.
Thereafter, the reverse operation is natural: OPbP ! (¢, u) = P~ (t||u) = ~||m||r.

Encryption Algorithm. The space of the plaintexts is M = {0, 1}, the en-
cryption algorithm uses a random coin from the set r € R = {0,1}*, a random
bit v, and outputs a ciphertext ¢ into {0,1}": on a plaintext m € M, one com-
putes t|ju = OPbP(y,m,r) and ¢ = gp(t||u).

Decryption Algorithm. On a ciphertext ¢, one first computes t|ju = ¥g(c),
where t € {0,1}* and u € {0,1}**', and then ~||m|r = OPbP~*(t,u). The
answer is m.

Signature Algorithm. The space of the messages is M = {0, 1}, the signature
algorithm outputs a signature o into {0, 1}": on a message m € M, one computes
v = PRF,(m), and then t||u = OPbP(vy,m,0%) and o = g (t||u).
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Verification Algorithm. On a signature o, one first computes ¢||u = @p(0),
where t € {0,1}* and u € {0,1}**!, and then ~||m|jr = OPbP (¢, ). If r = OF,
the verification outputs “Correct” and recovers m, otherwise outputs “Incor-
rect”.

3.2 Security Analysis

A variant of this padding has already been proved to lead to an IND/CCA secure
encryption scheme [20], and to a EUF/CMA signature scheme [11], in the random-
permutation model. However, there was not the additional bit of Katz and Wang,
that just makes more randomness in the encryption. Here, we extend these results
to IND/CMA + CCA and EUF/CMA + CCA:

Theorem 2. Let A and B be both chosen-ciphertext (to the decryption oracle)
and chosen-message (to the signing oracle) adversaries, against the encryption
scheme (IND) and the signature scheme (EUF) respectively. Let us assume that
A can break the semantic security with an advantage g, or B can produce an
existential forgery with success probability s (within a time bound t, after g,
qs, g4 queries to the permutation oracles, signing oracle and decryption oracle
respectively.) Then the permutation ppk can be inverted with probability ' within
time t' where either:

(G taatas+1)® (@+1)® 2gp+gatgs+2

!

g > €R SR TIT1 o oF , or

s 1 (. (ptaatas+1)® (qa+1)?  2g,+qa+gs+2
T gptgstl 2k+e+1 2¢ 2k '

Particularly, if the function @p is induced by a (t',€")-secure claw-free per-
mutation, the latter can be rewritten by:

/
€2 oF+l+1 o ok

DN =

(Es— (qP+Qd+QS+1)2 _ (Qd+1)2 _QQp+Qd+QS+2)

where t' <t+ (g + qa + qs + 1)Ty, and Ty is the time for an evaluation of @pk.

Proof. We provide now the proof of this theorem, with incremental games, to
reduce the inversion of the permutation ¢pk on a random instance y (i.e., find
such that y = pp(2)) to an attack against either the encryption or the signature.
We show that either A or B can help us to invert @pk.

Some parts of this proof are similar to [20]. We anyway provide the proof
without the similar parts. The full proof can be found in the full version [5].

GAME Gg: This is the attack game, in the random-permutation model. Several
oracles are thus available to the adversary: two random permutation oracles (P
and P~1), the signing oracle S, and the decryption oracle Dgy.

To break the encryption, the adversary A = (Aj, As) runs its attack in
two steps. First, A; is given the public key pk, and outputs a pair of messages
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(mg, m). Next a challenge ciphertext is produced by the challenger, which flips
a coin b and computes a ciphertext ¢* of m* = my. This ciphertext comes from
a random r* & {0,1}*, a bit v* and ¢* = E(v*, mp, %) = @k(P(Y*, mp,7*)). In
the second step, on input c*, A, outputs a bit o’. We denote by Disty the event
b = b and use the same notation Dist,, in any game G,,.

To break the signature, the adversary B outputs its forgery, one checks
whether it is actually valid or not. We denote by Forge, the event this forged
signature is valid and use the same notation Forge,, in any game G,,.

Note that the adversary is given access to the signing oracle Sg and the
decryption oracle Dy at any time during the attack. Note also that if the ad-
versary asks g4 queries to the decryption oracle, g5 queries to the signing oracle
and g, queries to the permutation oracles, at most gq + g5 + g, + 1 queries are
asked to the permutation oracles during this game, since each decryption query
or signing query may make such a new query, and the last verification step or
the challenger step does too. By definition,

e = AdvY/SmTER@ Ay — Pr{Dist] — 1/2

€g = Succg';é;ma+cca(8) = Pr[Forge].

GAME G1: We skip the easy steps, similar to [20] for the encryption part,
and to [4] for the signature. Details can be found in the full version [5], which
leads to the simulation presented in Figures 1 and 2, which is statistically indis-
tinguishable from the initial one since the distance is bounded by:

(@p+aa+as+1)?*  (@a+1)?  2¢,+qa+qs+2
Ag < QR TH + o0 + ok .

.. |For two messages (mo,m1), flip coins v* and b, set m* = my, and randomly
go choose 7*.
= »Rule Chal®
5 | p* =Py, m*,1%); ¢ = ppr(p”).
»Rule ChalAdd"
‘ Add (y*,m*,r*, L, L, ¢") in P-List.

Answer ¢*
o |The game ends with the verification of the output (o) from the adversary.
'S |One first computes t||u = @p(0), then asks for (y,m,r) = P~(t||u). Then he
5 checks whether r = 0%, in which case the signature is a valid signature of m.
2

Fig. 1. Simulation in the Game G1
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A query P(y,m,r) is answered by p, where

5}
£ | »Rule EvalP®
Q — Look for (v, m,r, a, 3,c) in P-List:
a e if the record is found,
x ifa# L, p=q;
x otherwise, Stop.
e otherwise, choose a random element s € {0,1}" and com-
putes p = @p(s). The record (v, m,r,p, s, opx(p)) is added
to P-List.
Furthermore, if (v, m,r) is a direct query from the adversary to P, store the
record (y,m,r,p, L, opk(p)) in P-List.
o |A query P~1(p) is answered by (v, m,r), where
S | »Rule InvP®
Q Compute ¢ = ¢pk(p) and look for (v, m,r, a, 3,c) in P-List:
H\Q — if the record is found, (v, m,r) is defined,
— otherwise we randomly choose (v, m,r) in {0,1}". If 7 = 0F,
Stop.
Furthermore, if p a direct query from the adversary to P!, store the record
(’77 m,T,p, J~7 (Ppk(p)) in P-List.
o |A query Dy(c) is answered by m, where
g »Rule DV
Qo Look for (v, m,r, «, 3,c) in P-List:
Q 1. if the record is found, (v, m,r) is defined,
2. otherwise we randomly choose (v, m,r) in {0,1}".
Store (y,m,r, L, L, c) in P-List.
o |For a sign-query Si(m), one first computes v = PRF,(m), then asks for p =
T‘é P(vy,m,0%) to the EvalP-oracle. The signature ¢ is then defined according to
S |the following rule:
“ | »Rule SV

‘ Look for (y,m, 0%, p,s,c) in P-List, and set o = s.

Fig. 2. Simulation in the Game G1
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In the following, depending on the goal of the adversary, namely against
encryption or against signature, we complete the reduction to the inversion of
the function g on the given instance y.

Encryption Attack.

GAME Gi1:  We suppress the element (v*, m*,r*, L, L ¢*) from P-List during
the generation of the challenge.
»Rule ChalAdd(*-!)

‘ Do nothing.

The two games Gi.; and G are perfectly indistinguishable unless (v*, m*, r*)
is asked for P (which event is included in event BadP; 1, already excluded) or
p* = g (c*) is asked to P~L. We define the latter event AsklnvP; 1. We have:
Ay 1 < Pr[AskinvPy 1]. Since (v*,m*,r*, L, L, ¢*) does not appear in P-List, the
adversary receives answers which are perfectly independent of the latter, and

therefore, it has no advantage for guessing b: Pr[Dist; 1] = %

GAME G o: Instead of choosing ¢* = ¢pk(p*), we choose ¢* = y, uniformly
at random.
»Rule Chal(1-?)
‘ c=uy.

So, one implicitly defines p* = g (y). Since the tuple (v*,m*,r*, L, 1 ¢*) is
not used anywhere in the simulation, the two games G1 5 and Gq.; are perfectly
indistinguishable: A; o = 0.

Finally, it is clear that when the event AsklnvP; 5 happens, one can easily
compute s on y: with a look up into P-List (which contains at most ¢,+gq+¢s+1
elements), one can extract p such that y = ppk(p). Therefore, Pr[AskinvP; 5] <
Succ‘;w(t’), where T, is the time for evaluating ¢p, and ¢/ <t + (gp + qa + ¢s +
1) x T, is the running time of the simulation in the current game. This completes
the first part of the proof.

Signature Attack (The General Case).

GAME Gq1: In the following, we number calls to the permutation oracle,
but only those which are of the form (7, %, 0%), which are those that are used for
signature. We define a variable v which is initialized to 0.
»Rule EvalP(-1)
Look for (v, m,r, a, 3, ¢c) in P-List:
— if the record is found,
e ifa#l,p=aq
e otherwise, Stop.
— otherwise,
e if 7 = 0%, increment v
e choose a random element s € {0,1}" and computes p =
©pk(s). The record (v, m,r,p, s, ppk(p)) is added to P-List.
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Clearly, this leaves the game indistinguishable from the game Gi: A; ;1 = 0.
GAME Gy o: Since the verification process is included in the attack game,
the output message is necessarily asked to the permutation oracle EvalP. Let us
guess the index vy of this (first) query. If the guess failed, we abort the game.
Therefore, only a correct guess (event GoodGuess) may lead to a success.

Pr[Forge, ,] > Pr[Forge; ]/(qp + qs + 1).

GAME G 3: We now incorporate the challenge y to the simulation of the
permutation oracle. By this, we could extract the pre-image z. Our idea is to
return y as the value of the guessed v-th query:
»Rule EvalP(1-3)
Look for (v, m,r, a, 3, c) in P-List:
— if the record is found,
e ifa#l,p=aq
e otherwise, Stop.
— otherwise,
e if = 0¥, increment v
e if v # vy or if 7 # 0%, choose a random element s € {0, 1}"
and computes p = @pk(s).
o if v =1y and r = 0F, sets p = y.
e The record (v, m,r,y, s, ppk(p)) is added to P-List.

Because of the random choice for the challenge y, this rule leaves the game
indistinguishable from the previous one: A; 3 = 0. It follows that the forgery
leads to the pre-image of y: Pr[Forge; 3] = Succy” (t + (g, +qa +gs +1)T,). This
concludes the second part of the proof.

Signature Attack (With (¢/,e’)-Secure Claw-Free Permutations). We
assume that (¢pk, Apk) are from a (¢, e’)-secure claw-free permutations family.
GAME G 1: We now exploit the bit v to the simulation of the permutation
oracle, as it was proposed firstly by Katz and Wang [13]. The idea is to use
©pk in the OPbP output, for one and only one value of bit v, and otherwise use
Apk- As this value of 7y is not predictable by the attacker, its forgery will, with a
probability %7 produce a claw.
»Rule EvalP(-1)
Look for (v, m,r,«, 3, ¢) in P-List:
— if the record is found,
e ifa 1, p=aq
e otherwise, Stop.
— otherwise,
e if 7 £ 0% or v = PRF,(m), choose a random element s €
{0,1}™ and compute p = @pk(s).
e if = 0% or v # PRF,(m), choose a random element s €
{0,1}™ and compute p = Ap(s).
e The record (m,r,p, s, ppk(p)) is added to P-List.
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Because of the random choice of s and so Apk(s), this rule leaves the game
indistinguishable from the previous one: Ay = 0.

Using arguments as in [13], one can easily see that the forgery leads to a claw
with probability % In fact, let us assume that the adversary can forge a signature
(7, ), where (1,0%) has been asked to the permutation oracle P either in a
permutation query or in the verification step. Since the bit bz = PRF,(/m) is
an unknown random bit in the view of the adversary, with probability of %,
there exists an element (m,7,p = Ak (5), 8, ¢pk(P)) in the P-List. In that case,
the simulator can output a claw @pk(6) = Apk(§).

O

3.3 Proposed Sizes for the Parameters

We say that a scheme achieves a security level of 27, if the ratio between the
running time ¢ of the adversary, and its success probability €, is at least 2":
this is an approximation of the expected time of success. Or similarly, we want
t/e < 27% with a usual security bound set with k = 80.

First, we can simplify the above security result. Indeed, for practical pur-
pose, where £ is the bit-size of the message, and k is the bit-size of the ran-
dom/redundancy, the former is expected to be much larger than the latter: the
quantity @Q/2¢, or even Q?/2°, can be ignored in front of Q/2* (since Q, the
global number of queries is bounded by 2%Y). Therefore, the above reduction
cost provides that

eg _ e 2

Tt
€ e’
TS < Qt + oF in the general case
2 2 . - ,
< - + ok if the function @pyk is induced by a claw-free permutation

In the latter case (the most interesting case, where one uses RSA) we can
assume the message length sufficiently large (and thus the RSA modulus) so
that €'/t is lower than 2782, Due to the Lenstra-Verheul’s estimation [15], for
the case of RSA, we can use a 1024-bit modulus.

In the general case, we have to consider that the security parameter (and
thus message length ¢) large enough such that the ration between &'/t is lower
than 2716, But then the overhead k = 82 is enough too.

As a conclusion, for the general case, we can choose k = 82 if the security
level of the function ¢ is about 2'6'. For the particular case of RSA, we can
use a 1024-bit modulus. We remark then that, with only 82 bits of redundancy,
we obtain the same level of security than RSA-PSS [3], which, compared to our
scheme, uses a lowest bandwidth. For the encryption security, we find again the
result from [20]: 82 bits of randomness are enough to achieve semantic security,
even under chosen-ciphertext and chosen-message attacks.
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4 The OAEP-3 Rounds Construction

4.1 Description

In order to work in the more usual random-oracle model [2], we now consider
the OAEP-3 rounds construction proposed in [20,21]. As above, the security of
this padding has already been studied for encryption, but without giving access
to the signing oracle to the adversary. We thus extend the security model to deal
with the two oracles access.

The encryption and signature schemes use three hash functions: F, G, H (as-
sumed to behave like random oracles in the security analysis) where the security
parameters satisfy n = k + ¢+ 1:

F A0, 1} = {0,131 G {0, 1} —{o,1}F  H:{0,1}F — {0, 1}"*".

The encryption and signature schemes use any permutation family (¢pk)pk
on the space {0,1}", whose inverses are respectively denoted g, where sk is
the private key associated to the public key pk. The symbol “||” denotes the
bit-string concatenation and identifies {0, 1}* x {0,1}* x {0,1} to {0,1}".

Padding OAEP3r and Unpadding OAEP3r™ !
OAEP3r(y,m,r):s=(y|m)®& F(r) t=r&G(s) u=sdH({)
OAEP3r(y,m,r) = t||lu
OAEP3r~'(t,u) : s =u® H(t) r=t®G(s) vllm=se& F(r)
OAEP3r~(t,u) = ~||m|r

Encryption Algorithm. The space of the plaintexts is M = {0, 1}*, the en-
cryption algorithm uses a random coin from the set r € R = {0,1}*, a random
bit v and outputs a ciphertext ¢ into {0,1}": on a plaintext m € M, one com-
putes t|ju = OAEP3r(y,m,r) and ¢ = @p(t||u).

Decryption Algorithm. On a ciphertext ¢, one first computes t|ju = (),
where t € {0,1}* and u € {0,1}**!, and then ~||m||r = OAEP3r~!(t,u). The

answer is m.

Signature Algorithm. The space of the plaintexts is M = {0, 1}, the sig-
nature algorithm outputs a signature o into {0,1}": on a plaintext m € M,
one computes v = PRF,(m), then computes t||u = OAEP3r(y,m,0%) and o =

Pekc(t]|w)-

Verification Algorithm. On a signature o, one first computes t||u = ¢p(0),
where t € {0,1}* and u € {0,1}**', and then ~|m|r = OAEP3r~*(t,u). If
r = 0%, the verification outputs “Correct” then recovers m, otherwise outputs
“Incorrect”
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4.2 Security Result
We extend the security result from [21] by the following theorem:

Theorem 3. Let A and B be both chosen-ciphertext (to the decryption oracle)
and chosen-message (to the signing oracle) adversaries, against the encryption
scheme (IND) and the signature scheme (EUF) respectively. Let us assume that
A can break the semantic security with the advantage eg, or B can produce an
existential forgery with success probability eg (within a time bound t, after gy,
g, Gh> s, qa queries to the oracles F, G, H, signing oracle and decryption oracle
respectively.) Then the permutation ppk can be inverted with probability ' within
time t' where either:

/ 2 1 6 1 g g9 5 f g9 /
€>5E_<QIX(“+/>+ ) + : or
! 1

&> —x
Gy +qs+1
1 6 49499 + 49 | 59495 + qeqn + a5 + qa
2 g g g
(ES - <q¢i X <2e+1 + Qk) T T ok

Particularly, if the function gk is induced by a (t',€")-secure claw-free per-
mutation, the latter can be rewritten by:

1 1 6 4949y +qg | 5949y + qgqn + G5 + qa
/ 2 g g g
€ 25X (55 - <Qd x <2e+1 + 2k> T ok

with t' < t+(qy +dg+an+9a)Tiu+ 93 Thu+ (9a+1)49qn (T +Ti), where Ty is the
time complezity for evaluating any function pp, and Ty, is the time complexity
for a look up in a list.

Proof. The full proof can be found in the full version [5]. The simulation of the
oracles as well as the simulation of the decryption are similar to the ones in [21].
The simulation of the signature (after all the oracles are well simulated) is quite
the same as in the random-permutation model case. a

4.3 Proposed Sizes for the Parameters

Using similar arguments as in the previous construction, one can simplify the
constraints on the security parameters:

— For encryption, one has:
!
e ¢ @
t —t 2k
Then, k£ = 161 is enough if the security parameters are large enough (i.e.,
as soon as &'/t < 2781,
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— For signature, in the general case:
"

E
<
t

Q< Q
T Tae

[\~

In the general case, k = 161 is also valid, as soon as &'/t < 27161,

— For signature, in case the function ¢p is induced by a claw-free permutation:
/
es 2 Q
t 2k
We have a similar expression as in the above encryption case (the term
'/t is replaced by 2¢’/t, which allows shorter security parameters. Anyway,
k = 161 is required, as soon as &'/t < 2752,

To sum up, for the interesting case of the RSA, one can choose k = 161, with a
security parameter chosen so that the security level of the function ¢ is about
282 that is 1024-bit modulus.
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