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Abstract. It is well known that a malicious adversary can try to retrieve
secret information by inducing a fault during cryptographic operations.
Following the work of Seifert on fault inductions during RSA signature
verification, we consider in this paper the signature counterpart.

Our article introduces the first fault attack applied on RSA in standard
mode. By only corrupting one public key element, one can recover the
private exponent. Indeed, similarly to Seifert’s attack, our attack is done
by modifying the modulus.

One of the strong points of our attack is that the assumptions on the
induced faults’ effects are relaxed. In one mode, absolutely no knowledge
of the fault’s behavior is needed to achieve the full recovery of the private
exponent. In another mode, based on a fault model defining what is called
dictionary, the attack’s efficiency is improved and the number of faults
is dramatically reduced. All our attacks are very practical.

Note that those attacks do work even against implementations with de-
terministic (e.g., RSA-FDH) or random (e.g., RSA-PFDH) paddings, ex-
cept for cases where we have signatures with randomness recovery (such
as RSA-PSS).

The results finally presented on this paper lead us to conclude that it is
also mandatory to protect RSA’s public parameters against fault attacks.

Keywords: RSA, Standard Mode, Fault Cryptanalysis, Seifert’s Attack.

1 Introduction

1.1 Basics

RSA [16] is today the most widely used public key cryptosystem. Let n = pg be
the product of two large primes typically of 512 to 1024 bits. Let e be the public



exponent, coprime with ¢(n) = (p — 1)(¢ — 1), where ¢(-) is the Euler totient
function. The public exponent e is linked to the so-called private exponent d by
equation ed =1 (mod ¢(n)).

Basically, in RSA cryptosystem [3, 4, 14], public operations (i.e., signature
verification or encryption) are done by computing an e-th power, while private
operations (i.e., signature generation or decryption) are done by computing a
d-th power. To speed up private operations, an efficient technique based on the
Chinese Reminder Theorem was proposed [15]: this is referred to the CRT mode,
by opposition to the standard mode.

RSA and physical attacks. The security of the RSA public key cryptosystem
is linked to the hardness of the factorization. In addition, when implementing
cryptosystems, one needs to be very careful about information leakage, which
else would allow so-called side-channel analysis [11].

In 1996, another type of attacks, called fault attacks, has been introduced
against the RSA CRT implementation [6]. This attack is known as the Bellcore
attack: only one fault induction on one half of the computation suffices to recover
the modulus factorization from one correct and one faulty signature, by just
computing a greatest common divisor. However, in case of the use of random
padding, the Bellcore attack cannot be applied.

Nowadays, in case of the standard RSA, there is only one known fault in-
duction attack in order to recover the private exponent. This attack is based on
flipping bits of the private exponent one per one.!

Type of faulted parameters. All the previous methods are based on fault
induction against private parameters.? An exception is presented in a recently
published article by Seifert [17], where he proposes for the first time to attack
the public part of RSA signature scheme, i.e., signature verification. The RSA
scheme itself is not endangered, i.e., the attacker is not able to forge new valid
signatures, but Seifert’s attack allows the attacker to pass — with a certain
probability — the signature verification step, for a message of her choice, by
corrupting the public modulus: all in all, the attacker’s goal is fulfilled, but the
attack is “one shot”, in the sense that it needs to be launched again to produce
another wrong acceptance.

1.2 Owur contribution

In this paper, we propose the first fault attack that can be used against RSA in
standard mode, to recover the private exponent by corrupting only public key
elements. This point is very critical, as other existing attacks already target the
private exponent, which should in essence be protected against faults. On the

! This attack can also be generalized to modify small sets of bits, typically bytes.
2 Inducing fault against public method has also been considered in the case of elliptic
curves [5,8].



contrary, prior to our paper, it was unclear whether it was necessary or not to
protect public elements: our paper clarifies this point by concluding that RSA
public key elements also have to be protected against fault attacks.

Our attack has the same starting point as Seifert’s one: it consists in cor-
rupting the public modulus. However, Seifert’s attack allows the attacker to pass
a signature verification (with a certain probability), while our attack allows a
full key recovery. Once the key is recovered, the adversary gets all power, while
Seifert’s attack allows just a single false acceptance.

An additional key property of our attack is that, in one of its mode, the
attacker needs absolutely no knowledge of the fault effect. No matter what the
fault’s effect is, she might recover the private exponent. This clearly improves
upon Seifert’s attack (where the attacker must guess the faulty modulus), or
upon flipping bit attack (where the fault attack must be unrealistically precise).

In another mode, our attack can be improved. With the help of a fault model,
we are able to dramatically reduce the number of faults needed to fully recover
the private key. As explained later, the attacker is not assumed to be so powerful,
as her knowledge of the fault she produced may be probabilistic or unprecise:
some of the off-line phases of the attack are proposed to deal with uncertainty.

The new fault attacks presented in this article apply to standard RSA and
not to the CRT mode. Moreover, fixed paddings (e.g., RSA-FDH [3]) or random
paddings with joint randomness (e.g., RSA-PFDH [9]) do not influence the attack.
The only limitation is in case of the signature with randomness recovery (e.g.,
RSA-PSS [4]) where the problem remains open.

1.3 Organization of the paper

This article is organized as follows. In Section 2, we remind the background
regarding fault attacks and the novelty introduced by Seifert. The core of our
paper begins at Section 3 where we define the general framework of our attack.
Then, in Section 4, we introduce the first mode of our attack, where the adversary
needs no particular knowledge about the fault induced on the device. Later, in
Section 5, we refine our attack to the case where a model of the fault attack is
accessible to the adversary. Finally, we conclude in Section 6.

2 Preliminaries

In the paper, the notation DL(u, s,n) is used to express the discrete logarithm
of s with respect to the basis p modulo n, which either is an integer defined
modulo the multiplicative order of y mod n or does not exist mean that s is
not a power of p mod n. Clearly, it can be generalized to any prime power p®
dividing n, and any integer r dividing the multiplicative order of p mod p® as
DL(p,s,p*) mod r (denoted DL(u,s,p*, r) in the sequel), which is an integer
defined modulo 7 or does not exist.

We remind that for relatively small value of r — say from 15 to 20 digits —,
the discrete logarithm DL(u, s,n,r) can be computed efficiently by square root
methods such as baby-step giant-step or Pollard’s rho [12].



2.1 Fault models

Fault based attacks can be realized in practice by various ways. In the past,
it was possible on certain components to induce faults using VCC glitches [1].
Nowadays, chips are designed to resist such fault induction means.

The best tools today to inject fault is certainly using a laser [2]. The effects
of the fault may vary according to the component, to the type of laser used,
to the various smart mechanisms implemented by the hardware designers etc.
Various fault models are commonly considered according to the “hypothetical”
capabilities of the attacker, in terms of location and timing precision of her faults.

From a practical point of view, the fault effect is highly dependent on the
component. The most simple fault to induce is to change a word (whose size
depends on the architecture) in an undetermined way. This can simply be ob-
tained by inducing a fault on address decoders for example, when parameters
stored in EEPROM or in Flash are transferred to RAM. If this transfer includes
a random ordering, then the location, in terms of word index is also unknown.

For some component the effect of the fault can be known, eventually with
some probability. In the literature, single bit flip models are sometimes consid-
ered. However, this is not so easy to make in practice whereas faulty word models
are very realistic. Moreover, a distinction is also done between permanent (sticky
bits) and transient faults: in the following we mainly consider values changed
from the beginning to the end of their use in a processus.

In this paper, we make less assumptions on the attacker’s injection capabili-
ties and stick a more realistic model

2.2 About the attack of Seifert and Muir

Before going further, let us first give a brief description of the Seifert’s paper
that motivated this article [17] and its generalization by Muir [13]. For the sake
of simplicity, the attack is called Seifert’s attack in the rest of this article. We
refer the interested reader to the original papers for further details.

The basic principle of Seifert’s attack is the following: the attacker tries to
find (off-line) a faulty modulus n’ such that the public exponent e and ¢(n’) are
coprime, and such that n’ is a possible or even plausible faulty value of modulus
n. To this aim, the adversary should use a fault model.

Furthermore, the attacker needs to compute efficiently the inverse of e mod
@(n’). This is possible when the factorization of n’ is known. Once d’, the inverse
of e mod p(n') is computed, the attacker constructs a signature s’ = ,ud/ mod n'.

This first operation, that consists in trying to find a n’ satisfying an useful
property and constructing an associated “faulty” signature, is done before the
attack. Then, an on-line procedure is carried out: the attacker executes the
signature verification algorithm with (s’, 1) as input, and tries to inject a fault
during this procedure in order to proceed computations modulo targeted n’
instead of modulo n. Clearly, the probability of success, and so the average
required number of faults, is dependent on the accuracy of the fault model and
the capability for an attacker to produce an enough precise fault to be able to
obtain the faulty modulus n’ with non negligible probability.



3 Framework of our Extensions to Seifert’s Attack

Seifert’s attack succeeds in forging a signature that is accepted as valid, but does
not reveal any information about the private key elements. Some unauthorized
access can be granted but the RSA key itself is not broken.

In the sequel, extensions of Seifert’s attack are presented. They let an at-
tacker recover the private exponent d from several faulty computations when
the modulus is altered before a standard RSA exponentiation.

3.1 General description and constraints of our attack

General methodology. Similarly to [13,17], our fault attack consists in mod-
ifying the modulus before an RSA exponentiation. The operation s = ¢ mod n
is targeted, and several faults are induced to collect faulty signatures from which
the attacker learns the private exponent d.

Definition 1 (Fault campaign, Fault couples). It is said that an attacker
processes the fault attack campaign if she executes the exponentiation s =
ptmodn I times, and corrupts these executions by changing the modulus n
into unknown moduli n}, to obtain fault couples (u;, S;)1<i<i-

Paddings. A general constraint comes from the use of RSA in real life: it is
folklore knowledge that one needs to use functions (called paddings, and denoted
A) that reduces the malleability of the RSA prior to the exponentiation. Some of
the paddings are deterministic — i.e., u = A(m)—, others are probabilistic —
i.e., u = A(m,r).3 In the probabilistic case, the randomness can be either joint
or self-recovered.

Because of redundancy checks of the paddings, after the decryption phase
(e.g., in RSA-OAEP), exploitation of fault attacks during decryption is generally
not possible, and so decryption is out of scope of this paper. For signatures,
fault attacks might be possible if u; are known to the attacker. It is the case
when the padding is deterministic (e.g., RSA-FDH) or if the randomness is joint
with the signature (e.g., RSA-PFDH). On the contrary, if the randomness is self-
recovered from the signature (e.g., RSA-PSS), then the faulty result does not
allow recovering p; and our attack cannot be done.

From now, we suppose the attacker can compute bases p; used during the
faulty exponentiations.

3.2 Dictionary of moduli

The literature is plenty of fault models (¢f. Section 2.1) that would allow the
adversary to guess how she could have modified the modulus n into n; during
the faulty exponentiations. Once such a choice is made, the adversary is then
able to construct a dictionary.

3 The notations here are obvious: m is the message, and r is the randomness.



Definition 2 (Dictionary). Depending on a fault model that the attacker might
have experimented, the attacker may be able to establish a priori a list of possible
values for the faulty moduli n}. Such a list is called a dictionary (of moduli).

Whether a dictionary is available to the attacker governs which methods she
may use to recover the private exponent d. As shown below, if an attacker has
access to a dictionary, then the main part of her work is to learn which of the
possible moduli of the dictionary was used for a given fault.

A dictionary is not necessarily mandatory and a first general method where
no dictionary is needed is presented in the next section. This particularly implies
that no fault model is required.

4 Recovering the Private Exponent Without Dictionary

This section describes a method to recover the private exponent d when the
attacker has no clue about what value a faulty modulus may take. This cor-
responds to an attacker who is unable to predict or identify any fault model
from the experimental setting of the attack. Note also that in the case where the
attacker has actually identified a fault model and that the induced dictionary
is too large to be practically handled (typically 232 entries) the attacker may
ignore this “useless” dictionary and place herself in the context of no dictionary
as well.

For the sake of clarity, in the description of the different attacks, we denote
by p’s the (possible) divisors of n}, and by ¢’s the (possible) divisors of the orders
of considered subgroups. Of course, these integers are not to be confused with
the unknown factorization of targeted modulus n.

4.1 General description of the attack

Once the fault campaign is performed, the attacker knows some fault couples
(4, 8i)1<i<1, corresponding to unknown moduli n} # n, related by s; = uf mod
n.. Input p; and output s; are known to the attacker while n} is unknown and
modeled as uniformly distributed over the integers less than 2°, where £,, is the
modulus bitsize.

From the data of the fault campaign, the private exponent d is retrieved
off-line, by progressively determining d mod ry, for some small prime powers 7.
When the product R = [],, rx exceeds the modulus n (and so unknown ¢(n)), d
can be recovered by means of the Chinese Remainder Theorem.

Improving the fraction of bits of d to know. If e is small (typically e = 3
or e = 216 + 1), then the equation relating public and private RSA exponents

ed=1+4+kon)=1+k(n+1—a)



can be used in order to reduce the fraction of d’s bits the attacker has to find to
recover d. Here « is an unknown value, and k verifies 0 < k < e. If k is known,
or guessed by exhaustive search when e is small, we have

_1+k(n+1) ka
N e e

d

where the unknown part ka/e verifies (assuming balanced factorization of n):
R <o <al¥]
e

Denoting u = L% — 1J, d may be expressed as d = d2" + d, where d is known,
and 0 < d < 2% is unknown. Knowledge of d mod R implies knowledge about
d mod R, so that d may be retrieved as soon as R is [%" + 1—‘ bits long. Hence,
in the following, for each attack, the two cases e small or e relatively large are
considered. It is thus possible to see how much it reduces the number of faults
required.

4.2 A useful proposition
Before detailing the off-line part, we state the following heuristics used hereafter.

Proposition 1. Let (u;,s;) be a fault couple corresponding to modulus n}, and
p® a prime power such that p { p; and p 1 s;. Let also & be the multiplicative
order of u; modulo p*. Then, for any r dividing § we have:

d= DL(:Uiasiapa) (mOd ’I") (1)
with probability 1 if p® | n}, and probability close to % otherwise.

Proof. By definition, s; = ¢ mod n}. Hence, when p® | n/, we have:
;= M;‘i mod ¢(p®) (mod p%)
= M;j mod & (mod pa)

so that d = DL(p;, 8;,p) (mod 6), from which Equation (1) follows.

On the contrary, when p® { n}, we admit that uniform distribution of n} over
the integers implies quasi uniform distribution of DL(u;, s;,p*) over residue
classes modulo r, hence the proposition. a

Of course, without knowing n}, it is impossible to decide which p® can be used
to determine d mod r with certainty, for some divisors r of ¢(p®). Nevertheless,
Proposition 1 suggests that, even if n} is unknown (and so its factorization),
one can mount an attack based upon a bias in favor of the true value d,. of the
residue class of d modulo r.



4.3 The off-line phase

The basic idea is that determining d, for some integer r, may be achieved by
considering some p® for which r | ¢(p®), and by taking the discrete logarithm
of s; in base pu; modulo p®. From Proposition 1, and provided that r also di-
vides the multiplicative order of p; modulo p*, the probability distribution of
DL(u;, 8;,p%, 1) is:

1 p*=1 _
-+ 2= ifx=d,
Pr ((DL(u;, s;, p%, = =P, TP
v ((DL(pi, 85, p%, 7)) = )) {z;_pal if o £ d,

By computing the value DL(u;, s;, p®,r) for all the fault couples of the fault
campaign, and counting how many times each residue class is suggested, we
expect that the correct value d, emerges from the noise, and is suggested more
often than others.

Note that the value of the bias

1 4 p-l
5o T e o

p*—1 a _
e pr—1

E =

vanishes proportionally to p* — 1. This means that given r, the smaller p®, the
larger the bias, and the smaller the number of faults needed to determine d,.
This suggests Algorithm 1 which, given r as input, tries to find the residue class
d,. Among all possible values of p® such that r | ¢(p®), this algorithm only
considers the smallest prime p such that r | p — 1 as this choice gives the largest
possible bias with high probability.

Algorithm 1 Predicting d mod r by counting method

INPUT: 7 = ¢’, a small power of a small prime
OutpuT: A prediction for d, = d mod r

Initialize an array count[0,...,r — 1] to zero.

\\ Phase 1: Search for the least prime p so thatr |p—1
p—2r+1
while p is not prime

p—p+r
\\ Phase 2: Compute d» = d mod r via the bias
for each fault couple (p, s;)

if ptp; and pts;

if r | order of u; modulo p and if DL(u;, s:,p,r) exists
count [DL(.U"L? Siy P, T)]++

return d, such that count[d,] = max; count[]




Algorithm 1 leads to the knowledge of d, for individual prime powers r = ¢7.
The attacker may integrate this building block into a higher level procedure
which determines d,. for as much r values as needed so that R = Hk ri is large
enough to fully recover d (or d when e is small).

4.4 Results

This counting method have been implemented. 512 bits of residue class infor-
mation about d are easily recovered within 25000 faults, which is enough for a
1024-bit key with small public exponent. About 60000 faults allow to recover
1024 bits of information, which is enough for either a 1024-bit key in the general
case, or a 2048-bit key with small public exponent.

5 Recovering the Private Exponent With a Dictionary

As already mentioned, no dictionary is needed for applying the method of Sec-
tion 4. Nevertheless, when a dictionary S is available to the attacker, it is then
possible to improve upon this counting method.

5.1 General methodology

The core observation is that, with a dictionary S, it becomes possible to relate
a particular modulus v; € S to some fault couple (p;, s;). Let us thus introduce
the following definition.

Definition 3 (Hit). For any v; € S, we say that an attacker found a hit for
vj if she was able to identify some fault couple (p;, s;) for which n} = v;.

Given a hit in hand, a certain amount of information about d may be col-
lected. Indeed, it is then possible to extract information related to each known
p® dividing v; as in Equation (1). One may then retrieve d mod ¢/ for each ¢/
which divides the multiplicative order of p; modulo p®.

We stress that the full factorization of v; is not needed since only some
known factors of v; may be considered and exploited. The attack thus consists
in identifying hits for a few moduli, and gathering information relative to known
factors for each of them. This raises the question: how many hits provide enough
information to recover the private exponent?

Table 1 shows some simulation results where the number of bits of informa-
tion retrieved about d is given as a function of the number of hits exploited.
These hit moduli were factorized by elliptic curve method up to 20-25 digits
factors, and information was retrieved with respect to all ¢/ less than a given
limit which took values 10%, 107 and 10° respectively. Simulations have been
conducted several times, and average over 200 experiments are presented below.

When the discrete logarithm computation limit is taken to 107, then 28
hits are enough to recover a 1024-bit RSA key (13 in the case of small public



Table 1. Amount of information (in bits) deduced from exploitation of hits

DL limit Number of hits

1 2 3 4 5 6 7 8 9 10
10° 33 62 87111136 159 182 206 227 248
107 41 75 113 150 184 219 251 285 315 346
10° 47 93 135177 214 255 296 334 374 412
11 12 13 14 15 16 17 18 19 20
10°  [267 289 312 331 352 373 396 416 436 455
107|374 406 436 465 493 522 553 580 609 639
10°  |452 490 526 561 599 638 673 709 744 780

21 22 23 24 25 26 27 28 29 30
10°  [477 496 516 537 533 570 587 602 618 635
107|667 695 723 751 778 807 833 861 890 916
10°  [815 849 881 917 953 988 1018 1055 1088 1124

exponent), and 59 hits allow to recover the private exponent of a 2048-bit RSA
key (28 in the case of small public exponent).

Beside knowing how many hits are needed, we now present in the next sub-
sections, two methods aiming at identifying them.

5.2 Finding hits by the collision method

Let r be an integer dividing the multiplicative order of p; modulo p*. Proposi-
tion 1 implies that computing DL(u;, s;, p®, ) for different couples (u;,s;) al-
ways gives the correct value of d,, as soon as p® divides nj. Otherwise, results
are uniformly distributed between 0 and r — 1.

This suggests a method which detects collisions like:

DL(/JJ'L1aSi1apa7T) = DL(Ninsizapavr) .

For suitably chosen p® and r values, with high probability, such a collision
reveals, not only that p® divides both nj and nj,, but also that nj =n;, =v;
(see Remark 1 below). This is particularly useful to identify one hit for this
common modulus.

Definition 4 (Marker). For a given modulus v € S, a couple (p,q) is called a
marker for v, if p is a known prime factor of v, and q is a not too small* prime
dividing p — 1.

Preparation phase. For as many moduli v € S as possible, we try to find
a specific marker. The set of moduli for which a marker has been identified is
denoted S*.

4 The fact that ¢ should be not too small is required to avoid false positive in the
collision search (cf. Remark 1).



Collision search phase. For each v; € S* with marker (p;, ¢;), we maintain
a list Dy, of all DL(u;, 54, pj,q;) for all fault couples exploited so far. As soon
as two fault couples have the same modulus value v; = nj = nj_, a collision is
found in D,,. By disregarding possible false positive, we can identify a hit for

Vj.

Complexity. In the ideal case where a marker has been found for all moduli
in S (i.e., S* = 5), the number of faults required to obtain such a collision is
O(+/]S]). For small ¢, obtaining ¢ hits requires O(,/¢|S]) faults.

In the more practical case where only a fraction a = |S*|/|S| of all possible
moduli are affiliated with a marker, the number of faults required for obtaining

¢ hits is O(1/£19]).

Remark 1 (False positives). For a given v;, a true collision appears in D, after
2|S| faults on average, while a false collision appears after O(,/g;) faults. There-
fore, false positive occurrence problem may be neglected as soon as min; /g; >
|S|. This inequality explains the notion of not too small introduced in Defini-
tion 4.

Application. Concretely, assume an attacker targeting the transfer of the mod-
ulus from EEPROM to RAM, able to randomly modify any individual byte of the
modulus, but unable to control which particular byte she is modifying. This fault
model is very realistic when, as a counter-measure, the modulus bytes are trans-
ferred in random order. The corresponding dictionary contains 2° - % =215
(resp. 21¢) moduli for a 1024-bit (resp. 2048-bit) RSA key. Furthermore, assume
that a marker has been found for 80% of the moduli. Referring to Table 1, re-
trieving a key in the general case requires about 1100 faults (resp. about 2200
faults for 2048-bit). When a small public exponent is used, only about 750 faults
are needed for 1024-bit (resp. about 1 500 faults for 2048-bit). This demonstrates
that even when applied to such a pretty large dictionary, this square root method
allows to dramatically reduce the number of required faults compared to the case
where no fault model is identified.

5.3 Finding hits by optimally exploiting faults

The objective of this method is to guess vectors of hits by optimally exploiting
the information brought by fault couples.

We incrementally build lists X; containing information provided by the faults
(i,8;) for 1 <4 < t. Xyiq is built by combining previous X; with next fault
(t4t41, St+1), and by removing elements that are incompatible. In other words,
for a given ¢, this method considers ¢ faults (u;,$;)1<i<:¢ acquired during the
fault campaign, and exhibits the set X} of data that are compatible with the
given ¢ faults.

More precisely, X is a list of triples (v, p, o), where :



— The t-uple v = (vj,,...,v;,) represents possible values taken by the faulty
moduli corresponding to the considered ¢ faults;

— The residue knowledge about d, p, is a collection of triples (g, f, o), each
meaning that d = a,s (mod q’), provided that v is the correct guess for
the vector (nf,...,n}), i.e., each vj, is the correct modulus corresponding
to i-th fault;

— The selectivity o associated to v and p is a scalar allowing to quantify the
relative likelihood of this particular v.

Below, we detail this method.

Initial phase. Given (u,s), not all v € S are compatible with this fault. Indeed,
v must simultaneously verify several conditions:

1. The signature s must be smaller than the modulus candidate v.

2. For each p dividing v, either (p | p and p | s) or (pfp and p1s)

3. For each p® dividing v, denoting 6(u) and &(s) the multiplicative orders
modulo p® of p and s respectively, we must have d(s) | ().

4. If ¢/ | ¢(p®) and ¢/ | cp(p’“/), where both p® and p'® divide v, then if
DL(p, s,p% q') and DL(p, s, p', q’) both exist, their respective values must
be equal.

This first phase hence consists, for every fault, in reducing, from S to S, s €
S, the set of all moduli in the dictionary which are compatible with that fault.
Note that this reduction is quite selective as — on average in our simulations —
only a mere 3% of the moduli verify all four conditions.

In the list S(, ), we associate to each modulus v, the set p of all triples
(¢, f,aqr) with agr = DL(p, s, p%, q’), for q of reasonable size, where p® | v. Such
a a,s value is always uniquely determined since all incompatible moduli (w.r.t.
condition 4) have been removed from S, ,). Furthermore, for each modulus, we
also compute a selectivity parameter o = /§(p), where U is the factored part
of v, and d(u) is the multiplicative order of p modulo & (i.e., the product of all
¢’/ used in the DL computations). Doing this for all faults allows to compute I
different potential initial sets X';. We then choose one of them for initiating our
process.

Combining faults. Once we have extracted as much information as possible
from each individual fault, we start a phase of combining these pieces of informa-
tion. We use an iterative approach where we combine information from the list
Yy with information brought by the (¢4 1)-th fault to update the data structure
into a new Xy .

For this purpose, we exhaust all (v, p, o) of X, and all (v, p, o) where moduli
v belong to S, ). We consider combinations of each (v, p, &) with each (v, p, o).
Each such combination results in a new triple (f(v,v),g(p,p), h(o,0)), which
will be kept and added to X1 only if evaluation of g(p, p) does not lead to any
inconsistency (see below).



The new guess of moduli, f(v,v) trivially consists in appending v to v. That
is, f(v,v) = (vj,,...,Vj,,Vj,,,) Where v;, ., = v.

The new residue knowledge on d, g(p, p), consists in the union of p with p.
If two triples (g, f,d,s) € p and (q,f’,dqfr) € p share the same prime ¢, then
only the one with the largest exponent max(f, f’) is kept. Moreover, in this case,
the compatibility between both constraints modulo ¢ must be checked. That is
(assuming w.l.o.g. that max(f, f') = f), d,s mod ¢/ must be equal to dgsr. If
this consistency is not verified, then that particular combination of (v, p, o) with
(v, p,0) is not kept.

The new selectivity h(o, o) takes the value o - o - k, where the multiplication
by o accounts for the selectivity of v, and multiplication by x accounts for a
cross-selectivity between v and v. This cross-selectivity factor is the product of
moduli in the intersection of p and p, that is kK = Hq qmi“(f’f/). Of course, in
this formula, if ¢ is not in p (resp. in p), we set the corresponding exponent f
(resp. f') to 0.

Final phase. Now that we have combined information from a set of faults, we
get a (possibly large) list of modular information about the private exponent
d, each associated to a likelihood/selectivity parameter o. We can sort that
list according to this last parameter, and, for each entry, check the value of d
recovered by applying the Chinese Remainder Theorem on p, until we get the
correct one. Note that if the residue knowledge p corresponding to some entry
does not allow to unambiguously determine d, then one or several more faults
must be exploited again, and combined with X. As the correct guess v about
(nf,...,n}) necessarily belongs to Xy, this algorithm must eventually succeed in
recovering d for some value t.

Remark 2. According to the size of the dictionary, handling these lists may be-
come intractable. In this case, one can choose to keep only track of a fraction
of the list, eliminating triples (v, p, o) with the lowest selectivity. The para-
meter o is in strong connection with an a posteriori probability of the guess
v about faulty moduli. Practical implementation and tests we performed show
undoubtedly that a strategy based on o is efficient.

Of course, a drawback of this idea is that one might remove the correct
combination of moduli from the list, and so this could lead to an unsuccessful
end of the algorithm. This may be the price to pay for shortening the list to a
manageable size.

Results. This method aims at determining the list of moduli vectors v com-
patible with a given set of faults. Necessarily, it always succeeds in proposing
the correct guess for v,® leading to the identification of ¢ hits with only ¢ faults,
which is obviously optimal in terms of required number of faults. Of course, the
important question is whether the correct vector appears near the top of the

5 If the trick discussed in Remark 2 is not used.



sorted list. If so, d is retrieved within only a few trials. Otherwise, the exhaus-
tive search for the correct guess on (nf,...,n}) may be out of reach, or this
vector may have been dropped if the decimation process suggested by Remark 2
was implemented.

With a pretty well factorized dictionary of 1000 moduli, we experimented
that this method allows to recover d with little computational effort in most
cases, with as few faults as required according to Table 1. We expect that similar
results may be obtained with moderate effort in the case of a dictionary of 10 000
moduli.

6 Conclusion

In this paper, we have proposed the first fault attack that can be realized against
RSA in standard mode, to recover the private exponent by corrupting only public
key elements. Our contribution can, in this sense, be viewed as a generalization
of Seifert’s and Muir’s recent articles on obtaining a false signature acceptance
by corrupting the modulus. However, this latter kind of attack only allows to
pass a signature verification, while ours allows a full key recovery.

Our attack is divided into two modes. In the first one, the attacker needs
absolutely no knowledge of the fault’s behavior to recover the private exponent.
This attack is also very attractive from a practical point of view, and represents,
to our knowledge, the only known fault attack on RSA in standard mode requir-
ing no fault model. The second mode, based on a fault model, has been proved
to be particularly efficient. It dramatically reduces the number of faults needed
to fully recover the private key. For this technique to work, the attacker does not
need to be particularly powerful in the sense that she does not have to master
the fault’s exact effect. The fault she produces may be probabilistic or unprecise.
Two variants have been proposed, with separate pros and cons and use cases.

There still are so open issues like whether our attacks can be adapted in the
case of randomized exponent, or whether one could tackle with a probabilistic
padding scheme with randomness recovery such as RSA-PSS.

Nevertheless, this paper teaches us that, as in the case of elliptic curves [5,8],
one should also protect RSA public key elements against fault attacks.
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